Exact solution to the inverse kinematics problem of a standard 6-axis robot manipulator

1986 ◽  
Vol 3 (3) ◽  
pp. 259-280 ◽  
Author(s):  
M. Shahinpoor ◽  
M. Jamshidi ◽  
Young T. Kim
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianping Shi ◽  
Yuting Mao ◽  
Peishen Li ◽  
Guoping Liu ◽  
Peng Liu ◽  
...  

The inverse kinematics of redundant manipulators is one of the most important and complicated problems in robotics. Simultaneously, it is also the basis for motion control, trajectory planning, and dynamics analysis of redundant manipulators. Taking the minimum pose error of the end-effector as the optimization objective, a fitness function was constructed. Thus, the inverse kinematics problem of the redundant manipulator can be transformed into an equivalent optimization problem, and it can be solved using a swarm intelligence optimization algorithm. Therefore, an improved fruit fly optimization algorithm, namely, the hybrid mutation fruit fly optimization algorithm (HMFOA), was presented in this work for solving the inverse kinematics of a redundant robot manipulator. An olfactory search based on multiple mutation strategies and a visual search based on the dynamic real-time updates were adopted in HMFOA. The former has a good balance between exploration and exploitation, which can effectively solve the premature convergence problem of the fruit fly optimization algorithm (FOA). The latter makes full use of the successful search experience of each fruit fly and can improve the convergence speed of the algorithm. The feasibility and effectiveness of HMFOA were verified by using 8 benchmark functions. Finally, the HMFOA was tested on a 7-degree-of-freedom (7-DOF) manipulator. Then the results were compared with other algorithms such as FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA. The pose error of end-effector corresponding to the optimal inverse solution of HMFOA is 10−14 mm, while the pose errors obtained by FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA are 102 mm, 10−1 mm, 10−2 mm, 102 mm, and 102 mm, respectively. The experimental results show that HMFOA can be used to solve the inverse kinematics problem of redundant manipulators effectively.


Robotica ◽  
1994 ◽  
Vol 12 (1) ◽  
pp. 59-64 ◽  
Author(s):  
I. Uzmay ◽  
S. Yildirim

This paper presents an example of the application of geometric and algebraic approaches to the inverse kinematics problem of four-link robot manipulators. A special arm configuration of the robot manipulator is employed for solving the inverse kinematics problem by using the geometric approach. The obtained joint variables as angular positions are defined in the form of cubic polynomials. The other kinematic parameters of the joints, such as angular velocities and angular accelerations, are the time derivatives of these polynomials. It is evident that there is no definite difference between the results of the two approaches. Consequently, if an appropriate arm configuration for the geometric approach can be established, the inverse kinematics can be solved in a simpler and shorter way.


2011 ◽  
Vol 143-144 ◽  
pp. 265-268
Author(s):  
Zhi Zhong Liu ◽  
Hong Yi Liu ◽  
Zhong Luo

To solve the inverse kinematics problem of a robot manipulator without closed form solutions, one-dimensional iterative method is very useful. However, for a 5-DOF robot manipulator, because of the uncontrolable and uncertain orientation vectors, it's difficult to analytically express all joint variables by one of them, therefore one-dimensional iterative method can not be directedly used. By adding an appropriate virtual joint to it, a 5-DOF manipulator can be changed into a 6-DOF one so that the uncertain orientation vectors can be pre-given, and the difficulty is solved. To illustrate this virtual joint method a 5-DOF serial robot manipulator with prismatic arm joint and offset wrist is discussed in this paper as an example.


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875515 ◽  
Author(s):  
Igor Dimovski ◽  
Mirjana Trompeska ◽  
Samoil Samak ◽  
Vladimir Dukovski ◽  
Dijana Cvetkoska

Kinematics as a science of geometry of motion describes motion by means of position, orientation, and their time derivatives. The focus of this article aims screw theory approach for the solution of inverse kinematics problem. The kinematic elements are mathematically assembled through screw theory by using only the base, tool, and workpiece coordinate systems—opposite to conventional Denavit–Hartenberg approach, where at least n + 1 coordinate frames are needed for a robot manipulator with n joints. The inverse kinematics solution in Denavit–Hartenberg convention is implicit. Instead, explicit solutions to inverse kinematics using the Paden–Kahan subproblems could be expressed. This article gives step-by-step application of geometric algorithm for the solution of all the cases of Paden–Kahan subproblem 2 and some extension of that subproblem based on subproblem 2. The algorithm described here covers all of the cases that can appear in the generalized subproblem 2 definition, which makes it applicable for multiple movement configurations. The extended subproblem is used to solve inverse kinematics of a manipulator that cannot be solved using only three basic Paden–Kahan subproblems, as they are originally formulated. Instead, here is provided solution for the case of three subsequent rotations, where last two axes are parallel and the first one does not lie in the same plane with neither of the other axes. Since the inverse kinematics problem may have no solution, unique solution, or many solutions, this article gives a thorough discussion about the necessary conditions for the existence and number of solutions.


1997 ◽  
Vol 63 (5) ◽  
pp. 699-703
Author(s):  
Xiaohai JIN ◽  
Sachio SHIMIZU ◽  
Nobuyuki FURUYA

Sign in / Sign up

Export Citation Format

Share Document