scholarly journals Good Manufacturing Practice‐Grade CD34 + Selection from Thawed Cord Blood and Short‐Term Expansion over 3–4 Days as Starting Material for the Generation of Human Leukocyte Antigen Homozygous Induced Pluripotent Stem Cells

2019 ◽  
Vol 8 (S1) ◽  
Author(s):  
Stefanie Liedtke ◽  
Lutz Koerschgen ◽  
Gesine Kogler
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Casimir de Rham ◽  
Jean Villard

Great hopes have been placed on human pluripotent stem (hPS) cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA), the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS) cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.


2019 ◽  
Vol 51 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Yeonsue Jang ◽  
Jinhyeok Choi ◽  
Narae Park ◽  
Jaewoo Kang ◽  
Myungshin Kim ◽  
...  

2019 ◽  
Vol 20 (19) ◽  
pp. 4875 ◽  
Author(s):  
Vanegas ◽  
Galindo ◽  
Páez-Gutiérrez ◽  
González-Acero ◽  
Medina-Valderrama ◽  
...  

Hematopoietic progenitor cell (HPC) transplantation is a treatment option for malignant and nonmalignant diseases. Umbilical cord blood (UCB) is an important HPC source, mainly for pediatric patients. It has been demonstrated that human leukocyte antigen (HLA) matching and cell dose are the most important features impacting clinical outcomes. However, UCB matching is performed using low resolution HLA typing and it has been demonstrated that the unnoticed mismatches negatively impact the transplant. Since we found differences in CD34+ viability after thawing of UCB units matched for two different patients (p = 0.05), we presumed a possible association between CD34+ cell viability and HLA. We performed a multivariate linear model (n = 67), comprising pre-cryopreservation variables and high resolution HLA genotypes separately. We found that pre-cryopreservation red blood cells (RBC), granulocytes, and viable CD34+ cell count significantly impacted CD34+ viability after thawing, along with HLA-B or -C (R2 = 0.95, p = 0.01; R2 = 0.56, p = 0.007, respectively). Although HLA-B*40:02 may have a negative impact on CD34+ cell viability, RBC depletion significantly improves it.


Sign in / Sign up

Export Citation Format

Share Document