scholarly journals Functional Integrity and Gene Expression Profiles of Human Cord Blood-Derived Hematopoietic Stem and Progenitor Cells Generated In Vitro

2018 ◽  
Vol 7 (8) ◽  
pp. 602-614 ◽  
Author(s):  
Roberto Dircio-Maldonado ◽  
Patricia Flores-Guzman ◽  
Julieta Corral-Navarro ◽  
Ileana Mondragón-García ◽  
Alfredo Hidalgo-Miranda ◽  
...  
2017 ◽  
Vol 6 (12) ◽  
pp. 2942-2956 ◽  
Author(s):  
Sócrates Avilés-Vázquez ◽  
Antonieta Chávez-González ◽  
Alfredo Hidalgo-Miranda ◽  
Dafne Moreno-Lorenzana ◽  
Lourdes Arriaga-Pizano ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Lionel Faivre ◽  
Véronique Parietti ◽  
Fernando Siñeriz ◽  
Sandrine Chantepie ◽  
Marie Gilbert-Sirieix ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142110448
Author(s):  
Gordian Born ◽  
Marina Nikolova ◽  
Arnaud Scherberich ◽  
Barbara Treutlein ◽  
Andrés García-García ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) are frequently located around the bone marrow (BM) vasculature. These so-called perivascular niches regulate HSC function both in health and disease, but they have been poorly studied in humans due to the scarcity of models integrating complete human vascular structures. Herein, we propose the stromal vascular fraction (SVF) derived from human adipose tissue as a cell source to vascularize 3D osteoblastic BM niches engineered in perfusion bioreactors. We show that SVF cells form self-assembled capillary structures, composed by endothelial and perivascular cells, that add to the osteogenic matrix secreted by BM mesenchymal stromal cells in these engineered niches. In comparison to avascular osteoblastic niches, vascularized BM niches better maintain immunophenotypically-defined cord blood (CB) HSCs without affecting cell proliferation. In contrast, HSPCs cultured in vascularized BM niches showed increased CFU-granulocyte-erythrocyte-monocyte-megakaryocyte (CFU-GEMM) numbers. The vascularization also contributed to better preserve osteogenic gene expression in the niche, demonstrating that niche vascularization has an influence on both hematopoietic and stromal compartments. In summary, we have engineered a fully humanized and vascularized 3D BM tissue to model native human endosteal perivascular niches and revealed functional implications of this vascularization in sustaining undifferentiated CB HSPCs. This system provides a unique modular platform to explore hemato-vascular interactions in human healthy/pathological hematopoiesis.


2019 ◽  
Vol 20 (8) ◽  
pp. 1985 ◽  
Author(s):  
Huilin Li ◽  
Haiyun Pei ◽  
Xiaoyan Xie ◽  
Sihan Wang ◽  
Yali Jia ◽  
...  

Cord blood (CB) is an attractive source of hematopoietic stem cells (HSCs) for hematopoietic cell transplantation. However, its application remains limited due to the low number of HSCs/progenitors in a single CB unit and its notoriously difficulty in expanding ex vivo. Here, we demonstrated that the human fetal liver sinusoidal endothelial cells engineered to constitutively express the adenoviral E4orf1 gene (hFLSECs-E4orf1) is capable of efficient expansion ex vivo for human CB hematopoietic stem and progenitor cells (HSPCs). Coculture of CD34+ hCB cells with hFLSECs-E4orf1 resulted in generation of substantially more total nucleated cells, CD34+CD38− and CD34+ CD38−CD90+ HSPCs in comparison with that of cytokines alone after 14 days. The multilineage differentiation potential of the expanded hematopoietic cells in coculture condition, as assessed by in vitro colony formation, was also significantly heightened. The CD34+ hCB cells amplified on hFLSECs-E4orf1 were capable of engraftment in vivo. Furthermore, hFLSECs-E4orf1 highly expressed hematopoiesis related growth factor and Notch receptors. Accordingly, the CD34+ hCB cells amplified on hFLSECs-E4orf1 exhibited Notch signaling activation. Taken together, our findings indicated that FLSECs may potentially be the crucial component of the microenvironment to support recapitulation of embryonic HSC amplification in vitro and allow identification of new growth factors responsible for collective regulation of hematopoiesis.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hui Xie ◽  
Li Sun ◽  
Liming Zhang ◽  
Teng Liu ◽  
Li Chen ◽  
...  

Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.


Sign in / Sign up

Export Citation Format

Share Document