Application of cross-sectional transmission electron microscopy in the characterization of ion beam processed materials surfaces

1987 ◽  
Vol 10 (2-3) ◽  
pp. 142-148 ◽  
Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
P. P. Pronko ◽  
Tai-il-Mah
Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


2009 ◽  
Vol 15 (S2) ◽  
pp. 368-369 ◽  
Author(s):  
S Duarte ◽  
A Avishai ◽  
A Sadan

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


1987 ◽  
Vol 115 ◽  
Author(s):  
J. T. Wetzel ◽  
D. A. Danner

ABSTRACTCross-sectional samples for Transmission Electron Microscopy (TEM) have been made without the use of mechanical polishing and ion beam milling. Instead of traditional methods, we have used a combination of electron beam (e-beam) lithography for metal lift-off and reactive ion etching (RIE) to produce TEM samples of selected areas. The sample integrity for handling, dropping and ease of use is excellent, and the large amount of transparent area available for study is nearly 2 orders of magnitude larger than that given by traditional methods. The thickness of the samples is somewhat extreme, on the order of 0.50–1.0μm, but efforts are being made to reduce this dimension in order to make the method applicable to the whole range of materials used in silicon technology.


Sign in / Sign up

Export Citation Format

Share Document