Coding of Experimental Conditions in Microfluidic Droplet Assays Using Colored Beads and Machine Learning Supported Image Analysis

Small ◽  
2018 ◽  
pp. 1802384 ◽  
Author(s):  
Carl‐Magnus Svensson ◽  
Oksana Shvydkiv ◽  
Stefanie Dietrich ◽  
Lisa Mahler ◽  
Thomas Weber ◽  
...  
Small ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1970021 ◽  
Author(s):  
Carl-Magnus Svensson ◽  
Oksana Shvydkiv ◽  
Stefanie Dietrich ◽  
Lisa Mahler ◽  
Thomas Weber ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1089
Author(s):  
Sung-Hee Kim ◽  
Chanyoung Jeong

This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO2) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO2 nanostructures’ thicknesses by performing anodization. We successfully grew TiO2 films with different thicknesses by one-step anodization in ethylene glycol containing NH4F and H2O at applied voltage differences ranging from 10 V to 100 V at various anodization durations. We found that the thicknesses of TiO2 nanostructures are dependent on anodization voltages under time differences. Therefore, we tested the feasibility of applying machine learning algorithms to predict the deformation of TiO2. As the characteristics of TiO2 changed based on the different experimental conditions, we classified its surface pore structure into two categories and four groups. For the classification based on granularity, we assessed layer creation, roughness, pore creation, and pore height. We applied eight machine learning techniques to predict classification for binary and multiclass classification. For binary classification, random forest and gradient boosting algorithm had relatively high performance. However, all eight algorithms had scores higher than 0.93, which signifies high prediction on estimating the presence of pore. In contrast, decision tree and three ensemble methods had a relatively higher performance for multiclass classification, with an accuracy rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and multiclass classifications. We believe that these results show that we can apply machine learning techniques to predict surface quality improvement, leading to smart manufacturing technology to better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.


2019 ◽  
Vol 11 (10) ◽  
pp. 1181 ◽  
Author(s):  
Norman Kerle ◽  
Markus Gerke ◽  
Sébastien Lefèvre

The 6th biennial conference on object-based image analysis—GEOBIA 2016—took place in September 2016 at the University of Twente in Enschede, The Netherlands (see www [...]


2021 ◽  
pp. 127302
Author(s):  
Punniyakotti Varadharajan Gopirajan ◽  
Kannappan Panchamoorthy Gopinath ◽  
Govindarajan Sivaranjani ◽  
Jayaseelan Arun

Sign in / Sign up

Export Citation Format

Share Document