Unveiling the Role and Mechanism of Nb Doping and In Situ Carbon Coating on Improving Lithium‐Ion Storage Characteristics of Rod‐Like Morphology FeF 3 ·0.33H 2 O

Small ◽  
2021 ◽  
pp. 2105193
Author(s):  
Min Liu ◽  
Junchang Liu ◽  
Biaobing Chen ◽  
Tianjing Wu ◽  
Gang Wang ◽  
...  
2019 ◽  
Vol 833 ◽  
pp. 380-386 ◽  
Author(s):  
Zi Wen ◽  
Zhi Zhu ◽  
Bo Jin ◽  
Huan Li ◽  
Weimin Yao ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
pp. 362-367 ◽  
Author(s):  
Bin Luo ◽  
Tengfei Qiu ◽  
Long Hao ◽  
Bin Wang ◽  
Meihua Jin ◽  
...  

3D graphene-templated tin-based foams with tunable pore structures and uniform carbon coating have been successfully developed, achieving superior cycling stability and rate capability for lithium ion storage.


2013 ◽  
Vol 1 (31) ◽  
pp. 8897 ◽  
Author(s):  
Chao Wang ◽  
Jing Ju ◽  
Yanquan Yang ◽  
Yufeng Tang ◽  
Jianhua Lin ◽  
...  

2018 ◽  
Vol 289 ◽  
pp. 228-237 ◽  
Author(s):  
Fanyu Kong ◽  
Xiaodong He ◽  
Qianqian Liu ◽  
Xinxin Qi ◽  
Dongdong Sun ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4611
Author(s):  
Wen Ding ◽  
Xiaozhong Wu ◽  
Yanyan Li ◽  
Shuo Wang ◽  
Shuping Zhuo

The biomass-based carbons anode materials have drawn significant attention because of admirable electrochemical performance on account of their nontoxicity and abundance resources. Herein, a novel type of nickel-embedded carbon material (nickel@carbon) is prepared by carbonizing the dough which is synthesized by mixing wheat flour and nickel nitrate as anode material in lithium-ion batteries. In the course of the carbonization process, the wheat flour is employed as a carbon precursor, while the nickel nitrate is introduced as both a graphitization catalyst and a pore-forming agent. The in situ formed Ni nanoparticles play a crucial role in catalyzing graphitization and regulating the carbon nanocrystalline structure. Mainly owing to the graphite-like carbon microcrystalline structure and the microporosity structure, the NC-600 sample exhibits a favorable reversible capacity (700.8 mAh g−1 at 0.1 A g−1 after 200 cycles), good rate performance (51.3 mAh g−1 at 20 A g−1), and long-cycling durability (257.25 mAh g−1 at 1 A g−1 after 800 cycles). Hence, this work proposes a promising inexpensive and highly sustainable biomass-based carbon anode material with superior electrochemical properties in LIBs.


2019 ◽  
Vol 11 (22) ◽  
pp. 19977-19985 ◽  
Author(s):  
Jie Lin ◽  
Jijian Xu ◽  
Wei Zhao ◽  
Wujie Dong ◽  
Ruizhe Li ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 41179-41185 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Ricky Tjandra ◽  
Xingye Fan ◽  
Xingcheng Xiao ◽  
...  

Nanocomposites of Nb2O5 NCs in situ grown on CNTs are successfully developed with excellent rate capability, leading to the successful fabrication of asymmetric supercapacitors with high energy and power density and long-term cycling stability.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Jeongeun Kim ◽  
Minyong Eom ◽  
Yongsub Yoon ◽  
Dongwook Shin

The effect of mechanical milling on the formation of short titanate nanotube and structural change induced is investigated. Mechanical milling produces the short nanotubes with the length of 30–160 nm. The lithium ion intercalation characteristics of the obtained short titanate nanotube were studied to verify the effect of the newly formed cross-sections of nanotubes. It was found that the protonated titanate nanotubes maintained long shapes until 30 min of mechanical milling and were transformed into agglomerated nanosheets and finally anatase granules depending on the treatment duration. Through galvanostatic investigation, the nanotubes with milling of 15 min exhibited the highest discharge capacity of 336 mAh·g−1in first cycle, 12.4% larger than pristine.


2016 ◽  
Vol 4 (32) ◽  
pp. 12638-12647 ◽  
Author(s):  
Salah Abureden ◽  
Fathy M. Hassan ◽  
Gregory Lui ◽  
Wook Ahn ◽  
Serubbabel Sy ◽  
...  

Novel in situ nickel doped 1-D lithium titanate nanofibers (Li4Ti5−xNixO12, where x = 0, 0.05 and 0.1) have been successfully synthesized using a facile electrospinning process.


Sign in / Sign up

Export Citation Format

Share Document