Deep‐Red‐Emitting Colloidal Quantum Well Light‐Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure

Small ◽  
2021 ◽  
pp. 2106115
Author(s):  
Farzan Shabani ◽  
Hamed Dehghanpour Baruj ◽  
Iklim Yurdakul ◽  
Savas Delikanli ◽  
Negar Gheshlaghi ◽  
...  
2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenhui Wang ◽  
Dengbao Han ◽  
Junhui Wang ◽  
Yingguo Yang ◽  
Xinyue Liu ◽  
...  

AbstractIn the field of perovskite light-emitting diodes (PeLEDs), the performance of blue emissive electroluminescence devices lags behind the other counterparts due to the lack of fabrication methodology. Herein, we demonstrate the in situ fabrication of CsPbClBr2 nanocrystal films by using mixed ligands of 2-phenylethanamine bromide (PEABr) and 3,3-diphenylpropylamine bromide (DPPABr). PEABr dominates the formation of quasi-two-dimensional perovskites with small-n domains, while DPPABr induces the formation of large-n domains. Strong blue emission at 470 nm with a photoluminescence quantum yield up to 60% was obtained by mixing the two ligands due to the formation of a narrower quantum-well width distribution. Based on such films, efficient blue PeLEDs with a maximum external quantum efficiency of 8.8% were achieved at 473 nm. Furthermore, we illustrate that the use of dual-ligand with respective tendency of forming small-n and large-n domains is a versatile strategy to achieve narrow quantum-well width distribution for photoluminescence enhancement.


2003 ◽  
Vol 42 (Part 2, No. 3A) ◽  
pp. L226-L228 ◽  
Author(s):  
Baijun Zhang ◽  
Takashi Egawa ◽  
Hiroyasu Ishikawa ◽  
Yang Liu ◽  
Takashi Jimbo

2010 ◽  
Vol 43 (35) ◽  
pp. 354004 ◽  
Author(s):  
Sang-Heon Han ◽  
Dong-Yul Lee ◽  
Hyun-Wook Shim ◽  
Gwon-Chul Kim ◽  
Young Sun Kim ◽  
...  

2009 ◽  
Vol 21 (7) ◽  
pp. 414-416 ◽  
Author(s):  
Tao-Hung Hsueh ◽  
Jinn-Kong Sheu ◽  
Wei-Chi Lai ◽  
Yi-Ting Wang ◽  
Hao-Chung Kuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document