scholarly journals Novel Core–Shell Polyamine Phosphate Nanoparticles Self‐Assembled from PEGylated Poly(allylamine hydrochloride) with Low Toxicity and Increased In Vivo Circulation Time (Small 35/2021)

Small ◽  
2021 ◽  
Vol 17 (35) ◽  
pp. 2170182
Author(s):  
Patrizia Andreozzi ◽  
Cristina Simó ◽  
Paolo Moretti ◽  
Joaquin Martinez Porcel ◽  
Tanja Ursula Lüdtke ◽  
...  
Small ◽  
2021 ◽  
pp. 2102211
Author(s):  
Patrizia Andreozzi ◽  
Cristina Simó ◽  
Paolo Moretti ◽  
Joaquin Martinez Porcel ◽  
Tanja Ursula Lüdtke ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xuelin Xia ◽  
Xiaoyuan Yang ◽  
Wei Huang ◽  
Xiaoxia Xia ◽  
Deyue Yan

AbstractAffibody molecules are small non-immunoglobulin affinity proteins, which can precisely target to some cancer cells with specific overexpressed molecular signatures. However, the relatively short in vivo half-life of them seriously limited their application in drug targeted delivery for cancer therapy. Here an amphiphilic affibody-drug conjugate is self-assembled into nanomicelles to prolong circulation time for targeted cancer therapy. As an example of the concept, the nanoagent was prepared through molecular self-assembly of the amphiphilic conjugate of ZHER2:342-Cys with auristatin E derivate, where the affibody used is capable of binding to the human epidermal growth factor receptor 2 (HER2). Such a nanodrug not only increased the blood circulation time, but also enhanced the tumor targeting capacity (abundant affibody arms on the nanoagent surface) and the drug accumulation in tumor. As a result, this affibody-based nanoagent showed excellent antitumor activity in vivo to HER2-positive ovary and breast tumor models, which nearly eradicated both small solid tumors (about 100 mm3) and large established tumors (exceed 500  mm3). The relative tumor proliferation inhibition ratio reaches 99.8% for both models.


2021 ◽  
Vol 17 (11) ◽  
pp. 2198-2209
Author(s):  
Guoqiang Rong ◽  
Maomao Xu ◽  
Suxin Shi ◽  
Quanjun Yao ◽  
Wei Cheng ◽  
...  

With the development of nanomedicine, studies focus on self-assembled nanoplatforms to reduce the toxicity of paclitaxel (PTX), promote the immune function at low-toxicity PTX, and achieve tumor synergistic therapy. Herein, a new nanoplatform was prepared with self-assembled 5-hydroxydopamine (DA)-PTX@tannic acid (TA)-Fe3+ nanoparticles (TDPP NPs) by consolidation of targeted DA-PTX and TA with the assistance of coordination between polyphenols and Fe3+. The polyphenol-based TDPP NPs can reduce the toxicity of PTX and thereby realize the in vitro and in vivo synergistic effect against tumors. The low-toxicity TDPP NPs can enhance the expression of CD40 immune protein. Moreover, the TDPP NPs possessed a small size (52.2±4 nm), high drug loading efficiency (95%), and stable pharmacokinetics, ensuring high tumor accumulation of TDPP NPs by enhanced permeability and retention effect. Our work sheds new light on the nanoformulation of PTX with low toxicity and synergistic therapy effect, which may find clinical applications in the future.


PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0216669 ◽  
Author(s):  
Sven-Ulrik Gorr ◽  
Craig M. Flory ◽  
Robert J. Schumacher

2021 ◽  
Vol 20 ◽  
pp. 153303382110365
Author(s):  
Lin Qiu ◽  
Shuwen Zhou ◽  
Ying Li ◽  
Wen Rui ◽  
Pengfei Cui ◽  
...  

Bifunctional magnetic/fluorescent core-shell silica nanospheres (MNPs) encapsulated with the magnetic Fe3O4 core and a derivate of 8-amimoquinoline (N-(quinolin-8-yl)-2-(3-(triethoxysilyl) propylamino) acetamide) (QTEPA) into the shell were synthesized. These functional MNPs were prepared with a modified stöber method and the formed Fe3O4@SiO2-QTEPA core-shell nanocomposites are biocompatible, water-dispersible, and stable. These prepared nanoparticles were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), thermoelectric plasma Quad II inductively coupled plasma mass spectrometry (ICP-MS), superconducting quantum interference device (SQUID), TG/DTA thermal analyzer (TGA) and Fourier transform infrared spectroscopy (FTIR). Further application of the nanoparticles in detecting Zn2+ was confirmed by the fluorescence experiment: the nanosensor shows high selectivity and sensitivity to Zn2+ with a 22-fold fluorescence emission enhancement in the presence of 10 μM Zn2+. Moreover, the transverse relaxivity measurements show that the core-shell MNPs have T2 relaxivity (r2) of 155.05 mM−1 S−1 based on Fe concentration on the 3.0 T scanner, suggesting that the compound can be used as a negative contrast agent for MRI. Further in vivo experiments showed that these MNPs could be used as MRI contrast agent. Therefore, the new nanosensor provides the dual modality of magnetic resonance imaging and optical imaging.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lu Wang ◽  
Shuwei Liu ◽  
Chunxia Ren ◽  
Siyuan Xiang ◽  
Daowei Li ◽  
...  

AbstractNanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.


2014 ◽  
Vol 26 (48) ◽  
pp. 8210-8216 ◽  
Author(s):  
Mei Chen ◽  
Shaoheng Tang ◽  
Zhide Guo ◽  
Xiaoyong Wang ◽  
Shiguang Mo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document