Inclusion Characteristics and Acicular Ferrite Nucleation in Ti-Containing Weld Metals of X70 Pipeline Steel

2017 ◽  
Vol 89 (2) ◽  
pp. 1700316 ◽  
Author(s):  
Bingxin Wang ◽  
Xianghua Liu ◽  
Guodong Wang
2021 ◽  
pp. 130603
Author(s):  
Xiaonan Qi ◽  
Xiaonan Wang ◽  
Hongshuang Di ◽  
Xinjun Shen ◽  
Pengcheng Huan ◽  
...  

2013 ◽  
Vol 690-693 ◽  
pp. 2205-2209
Author(s):  
Hong Mei Yang

The continuous cooling transformation behaviors were researched on X70 pipeline steel through two pass deformation and non-deformed austenite using Gleeble-3500 thermal mechanical simulator, and static continuous cooling transformation curve and dynamic continuous cooling transformation curve were measured through thermal dilation method and metallographic method. The influence of cooling rate and deformation parameters on microstructure was analyzed. The results show that the hot deformation accelerates the acicular ferrite and polygonal ferrite phase transformation, increases the starting transformation temperature and the finishing transformation temperature significantly, and shifts the CCT curve moving upward to the left side corner. Acicular ferrite is obtained in practice using accelerated cooling rate after deformation Acicular ferrite can be obtained in wider range of cooling rates, and microstructure and island structure is finer through hot deformation.


2011 ◽  
Vol 399-401 ◽  
pp. 245-249 ◽  
Author(s):  
Mai Wen Zhou ◽  
Hao Yu

Two X70 pipeline steel plates with different finishing cooling temperature showed different DWTT indexes. In order to investigate the influences of microstructure and texture on toughness EBSD and X-ray were employed. Plates with lower toughness had higher low angle boundary proportion than the other, which is different from the previous research. Then the macro textures of the two plates were obtained by the X-ray diffractometer. It was shown that the ‹110›//ND were dominant in both of the two plates. The effects of several components on the toughness were analyzed. This work shows that the {112}‹110› component is the favorable texture benefiting the toughness. ‹111›//ND has direct influence on the yield stress and toughness.


2012 ◽  
Vol 48 (10) ◽  
pp. 1267 ◽  
Author(s):  
Zhiying WANG ◽  
Jianqiu WANG ◽  
En-hou HAN ◽  
Wei KE ◽  
Maocheng YAN ◽  
...  

Author(s):  
Kaikai Li ◽  
Wei Wu ◽  
Guangxu Cheng ◽  
Yun Li ◽  
Haijun Hu ◽  
...  

Natural gas transmission pipeline is prone to internal corrosion due to the combination of corrosive impurities in the pipe (such as CO2, H2S and chlorides) and applied pressure of the pipeline, which seriously affects the safe operation of the pipeline. In this work, the corrosion behavior of a typical X70 pipeline steel was investigated by using potentiodynamic polarization and electrochemical impendence spectroscopy (EIS). The polarization and EIS data under different CO2 partial pressures (0–1 atm), H2S concentrations (0–150 ppm), chloride concentrations (0–3.5 wt%) and tensile stress (0–400 MPa) were obtained. The results show that corrosion rate increases with the increase of CO2 partial pressure and chloride concentration, respectively, while first increases and then decreases with the increase H2S concentrations. The corrosion rate is less affected by elastic tensile stress. In addition, a quantitative prediction model for corrosion rate of natural gas pipeline based on adaptive neuro-fuzzy inference system (ANFIS) was established by fitting the experimental data which maps the relationship between the key influencing factors (i.e. CO2 partial pressure, H2S concentration, chloride concentration and tensile stress) and the corrosion rate. The prediction results show that the relative percentage errors of the predicted and experimental values are relatively small. The prediction accuracy of the model satisfies the engineering application requirement.


Sign in / Sign up

Export Citation Format

Share Document