Corrosion Behavior of X70 Pipeline Steel and Corrosion Rate Prediction Under the Combination of Corrosive Medium and Applied Pressure

Author(s):  
Kaikai Li ◽  
Wei Wu ◽  
Guangxu Cheng ◽  
Yun Li ◽  
Haijun Hu ◽  
...  

Natural gas transmission pipeline is prone to internal corrosion due to the combination of corrosive impurities in the pipe (such as CO2, H2S and chlorides) and applied pressure of the pipeline, which seriously affects the safe operation of the pipeline. In this work, the corrosion behavior of a typical X70 pipeline steel was investigated by using potentiodynamic polarization and electrochemical impendence spectroscopy (EIS). The polarization and EIS data under different CO2 partial pressures (0–1 atm), H2S concentrations (0–150 ppm), chloride concentrations (0–3.5 wt%) and tensile stress (0–400 MPa) were obtained. The results show that corrosion rate increases with the increase of CO2 partial pressure and chloride concentration, respectively, while first increases and then decreases with the increase H2S concentrations. The corrosion rate is less affected by elastic tensile stress. In addition, a quantitative prediction model for corrosion rate of natural gas pipeline based on adaptive neuro-fuzzy inference system (ANFIS) was established by fitting the experimental data which maps the relationship between the key influencing factors (i.e. CO2 partial pressure, H2S concentration, chloride concentration and tensile stress) and the corrosion rate. The prediction results show that the relative percentage errors of the predicted and experimental values are relatively small. The prediction accuracy of the model satisfies the engineering application requirement.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 949 ◽  
Author(s):  
Wei Wu ◽  
Hailong Yin ◽  
Hao Zhang ◽  
Jia Kang ◽  
Yun Li ◽  
...  

An investigation into the electrochemical corrosion behavior of X80 pipeline steel under different elastic and plastic tensile stress in a CO2-saturated NaCl solution has been carried out by using open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopy, and surface analysis techniques. The results show that the corrosion rate of X80 steel first increases and then slightly decreases with the increase of elastic tensile stress, whereas the corrosion rate sharply increases with the increase of plastic tensile stress. Both elastic and plastic tensile stress can enhance steel corrosion by improving the electrochemical activity of both anodic and cathodic reactions. Moreover, compared with elastic tensile stress, plastic tensile stress has a more significant effect. Furthermore, electrochemical reactions for CO2 corrosion and mechanoelectrochemical effect are used to reasonably explain the corrosion behavior of stressed X80 steel in CO2 environment.



2021 ◽  
Author(s):  
Weizhi Wang ◽  
Junying Hu ◽  
Xi Yuan ◽  
Li Zhou ◽  
Jiansheng Yu ◽  
...  


2021 ◽  
Author(s):  
Weizhi Wang ◽  
Junying Hu ◽  
Xi Yuan ◽  
Li Zhou ◽  
Jiansheng Yu ◽  
...  


2021 ◽  
Author(s):  
Ahmad Fahdlam Saleh ◽  
Muhammad Zaid Kamardin ◽  
Shahrun Nizam Safiin ◽  
Mohd Farizan Ahmad

Abstract The gas contaminants especially CO2 and H2S from the well is a major threat to oil and gas production facilities and pipeline. Developing this type of reservoir cost enormous CAPEX and OPEX due the need for expensive materials or the need of continuous chemical injection. This paper outlines the opportunity of cost optimization for future field development and operational through mechanistic corrosion modelling approach. This method was embedded to an in-house corrosion prediction model that was first developed by collaboration with Ohio University in 2008 with capability to predict corrosion rate for partial pressure more than 20bar of CO2 and up to 1bar of H2S. The model validation was performed based on actual field production operated at 55°C and 22 bar of CO2 partial pressure followed the methodology as outlined in NACE paper C2012-0001449. Upon successful validation, the model has been deployed to assist an Operator of an offshore pipeline in Southeast Asia, operating at 97°C and 17 bar of CO2 partial pressure, to ascertain the risk due to CO2 corrosion and review the original pipeline design adequacy. Subsequently, the model has been utilized for an Operator of onshore facilities in Middle East to address specific issue encountered during the final stage of development for one of the wellpad in which the wells are expected to experience increase of H2S from 100ppm in original design to more than 1000ppm during actual production. This process changes raised a serious concern on the integrity of the materials as potential corrosion issue and the need for corrosion mitigation such as H2S Scavenger injection was not originally considered during early stage of engineering. The corrosion rate from the model has been validated against the intelligent pigging (IP) data and proven to be able to predict corrosion rate with +20% accuracy and more than 99% confidence level for CO2 partial pressure up to 25 bar with the presence of H2S. Based on deployment and utilization of the model, the high confidence in the model ability to accurately predict the corrosion rate will lead to potential CAPEX and OPEX optimization for the field development and during operational stage.





2015 ◽  
Vol 1120-1121 ◽  
pp. 773-778
Author(s):  
Zhen Guang Liu ◽  
Xiu Hua Gao ◽  
Lin Xiu Du ◽  
Jian Ping Li ◽  
Ping Ju Hao

The corrosion behavior of pipeline steel containing 1%Cr is studied by using immersion experiment. The corrosion rust is characteried with macroscopic/microscopic surface morphology, corrosion kinetics and corrosion phases. The results demonstrate that the main corrosion products are lepidocrocite and goethite, Cr-rich compound consists of the inner layer. The corrosion process could be divided into three stages. At stage 1, the corrosion rate decreases fast, and the distributed corrosion products are formed. At stage 2, the granular corrosion products appear on coupons surface gradually, and a plain corrosion rate is obtained. At stage 3, a compact and dense corrosion layer attaches to coupons surface, and corrosion rate decreases mildly.



2020 ◽  
Vol 1 (2) ◽  
pp. 27-30
Author(s):  
Bo Zhao ◽  
Yuxin Yu ◽  
Jing Guo ◽  
Tianyu Zhou ◽  
Shiwen Zou ◽  
...  

In this article, wire beam electrode (WBE) was used to evaluate the corrosion behavior of ND steel in environmental acid atmosphere with different partial pressure of CO2. Meanwhile, corrosion products and surface morphology analysis also used to support this research. The results showed that the corrosion behavior began from the edge of droplet in dew point corrosion, and gradually spread to the center of it. The spread speed would be increasing with CO2 partial pressure enhance, which was 24h in 5% CO2 and 4h in 50% CO2. Corrosion current density in the edge of droplet can form the “cathode-anode-cathode ring” structure and disappears gradually as the corrosion time was going. Corrosion morphology observation results showed three ring shapes region and different elemental composition of different corrosion products, which is correspondence with the “cathode-anode We-cathode ring” structure measured in WBE experiments. The results showed that the reaction gradually transferred to the uniform corrosion on electrode surface when the dew point corrosion reaction reaching the late stage. It comes from the dissolution, diffusion and reaction of gaseous corrosion medium of CO2 and O2.



2020 ◽  
Vol 993 ◽  
pp. 622-627
Author(s):  
Gang Wu ◽  
Peng Zhang ◽  
Jin Heng Luo ◽  
Li Feng Li ◽  
Guang Da Xu ◽  
...  

With the development of the natural gas industry, high flux natural gas pipelines will cause local deformation because of pressurization, which has an important effect in the service safety of pipeline materials. In this paper, the X70 pipeline steel with weld zone was studied, and the tensile test was used to simulate the uniaxial tensile stress. The results showed that the strain was mainly concentrated in the weld zone, which can imply that the weld zone has high strain hardening ability. The heat-affected zone with poor internal structure was prone to breakage. The research results can provide theoretical basis and experimental basis for pipeline steel welding process design and safety evaluation under high flux conditions.



Sign in / Sign up

Export Citation Format

Share Document