Effect of Spray Thickness and Collision Pressure on Spray Cooling Capacity in a Continuous Casting Process

2018 ◽  
Vol 89 (7) ◽  
pp. 1700567 ◽  
Author(s):  
Koichi Tsutsumi ◽  
Jun Kubota ◽  
Akira Hosokawa ◽  
Satoshi Ueoka ◽  
Hisatsugu Nakano ◽  
...  
2018 ◽  
Vol 240 ◽  
pp. 05022 ◽  
Author(s):  
Hocine Mzad ◽  
Abdessalam Otmani ◽  
Kamel Bey ◽  
Stanisław Łopata

The intention of this study is to give an idea about the influence of water-spray cooling on the solidification process of the liquid metal which enables to locate the shear region. The effect of spray heat transfer coefficient (hspray) during the liquid-to-solid transition through the cooled zone temperature and the metal latent heat of solidification are highlighted. A gray iron continuous casting process subjected to water-sprays cooling was simulated using the commercial code COMSOL MULTIPHYSICS 5.2. The obtained results show the great influence of hspray on the location of transition region as well as the relationship between hspray, wall outer temperature, latent heat dissipation, and the solidification time.


2018 ◽  
Vol 90 (4) ◽  
pp. 1800393 ◽  
Author(s):  
Haibo Ma ◽  
Justina Lee ◽  
Kaile Tang ◽  
Rui Liu ◽  
Michael Lowry ◽  
...  

1973 ◽  
Vol 59 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Kichinosuke MATSUNAGA ◽  
Chikakazu NAMIKI ◽  
Taiji ARAKI

2021 ◽  
Vol 13 (11) ◽  
pp. 5957
Author(s):  
Tomas Mauder ◽  
Michal Brezina

Production of overall CO2 emissions has exhibited a significant reduction in almost every industry in the last decades. The steelmaking industry is still one of the most significant producers of CO2 emissions worldwide. The processes and facilities used at steel plants, such as the blast furnace and the electric arc furnace, generate a large amount of waste heat, which can be recovered and meaningfully used. Another way to reduce CO2 emissions is to reduce the number of low-quality steel products which, due to poor final quality, need to be scrapped. Steel product quality is strongly dependent on the continuous casting process where the molten steel is converted into solid semifinished products such as slabs, blooms, or billets. It was observed that the crack formation can be affected by the water cooling temperature used for spray cooling which varies during the year. Therefore, a proper determination of the cooling water temperature can prevent the occurrence of steel defects. The main idea is based on the utilization of the waste heat inside the steel plant for preheating the cooling water used for spray cooling in the Continuous Casting (CC) process in terms of water temperature stabilization. This approach can improve the quality of steel and contribute to the reduction of greenhouse gas emissions. The results show that, in the case of billet casting, a reduction in the cooling water consumption can be also reached. The presented tools for achieving these goals are based on laboratory experiments and on advanced numerical simulations of the casting process.


2011 ◽  
Vol 295-297 ◽  
pp. 1284-1288 ◽  
Author(s):  
De Wei Li ◽  
Zhi Jian Su ◽  
Li Wei Sun ◽  
Katsukiyo Marukawa ◽  
Ji Cheng He

Swirling flow in an immersion nozzle is effective on improving quality of casting block and casting speed in continuous casting process of steel. However, a refractory swirl blade installed in the nozzle is liable to cause clogging, which limit the application of the process. In this study a new process is proposed, that is a rotating electromagnetic field is set up around an immersion nozzle to induce a swirling flow in it by Lorentz force. New types of swirling flow electromagnetic generator are proposed and the effects of the structure of the generator, the coil current intensity and frequency on the magnetic field and on the flow field in the immersion nozzle are numerically analyzed.


Sign in / Sign up

Export Citation Format

Share Document