A decentralized structural control algorithm with application to the benchmark control problem for seismically excited buildings

2012 ◽  
Vol 20 (9) ◽  
pp. 1211-1225 ◽  
Author(s):  
Y. Lei ◽  
D. T. Wu ◽  
L. J. Liu
2011 ◽  
Vol 317-319 ◽  
pp. 1373-1384 ◽  
Author(s):  
Juan Chen ◽  
Chang Liang Yuan

To solve the traffic congestion control problem on oversaturated network, the total delay is classified into two parts: the feeding delay and the non-feeding delay, and the control problem is formulated as a conflicted multi-objective control problem. The simultaneous control of multiple objectives is different from single objective control in that there is no unique solution to multi-objective control problems(MOPs). Multi-objective control usually involves many conflicting and incompatible objectives, therefore, a set of optimal trade-off solutions known as the Pareto-optimal solutions is required. Based on this background, a modified compatible control algorithm(MOCC) hunting for suboptimal and feasible region as the control aim rather than precise optimal point is proposed in this paper to solve the conflicted oversaturated traffic network control problem. Since it is impossible to avoid the inaccurate system model and input disturbance, the controller of the proposed multi-objective compatible control strategy is designed based on feedback control structure. Besides, considering the difference between control problem and optimization problem, user's preference are incorporated into multi-objective compatible control algorithm to guide the search direction. The proposed preference based compatible optimization control algorithm(PMOCC) is used to solve the oversaturated traffic network control problem in a core area of eleven junctions under the simulation environment. It is proved that the proposed compatible optimization control algorithm can handle the oversaturated traffic network control problem effectively than the fixed time control method.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
J. W. Yu ◽  
X. H. Zhang ◽  
J. C. Ji ◽  
J. Y. Tian ◽  
J. Zhou

Abstract This paper addresses the region-reaching control problem for a flexible-joint robotic manipulator which is formulated by Lagrangian dynamics. An adaptive control scheme is proposed for the manipulator system having two constrained regions which are constructed by selecting appropriate objective functions. The two joints of the flexible-joint manipulator can be, respectively, confined in different regions, and this gives more flexibility than the traditional fixed-point tracking control. By performing a straightforward Lyapunov stability analysis, a simple control algorithm is established to provide a solution for the region-reaching control problem. Finally, numerical simulations are given to validate the theoretical results.


Author(s):  
Akira Okamoto ◽  
Dean B. Edwards

Various control algorithms have been developed for fleets of autonomous vehicles. Many of the successful control algorithms in practice are behavior-based control or nonlinear control algorithms, which makes analyzing their stability difficult. At the same time, many system theoretic approaches for controlling a fleet of vehicles have also been developed. These approaches usually use very simple vehicle models such as particles or point-mass systems and have only one coordinate system which allows stability to be proven. Since most of the practical vehicle models are six-degree-of-freedom systems defined relative to a body-fixed coordinate system, it is difficult to apply these algorithms in practice. In this paper, we consider a formation regulation problem as opposed to a formation control problem. In a formation control problem, convergence of a formation from random positions and orientations is considered, and it may need a scheme to integrate multiple moving coordinates. On the contrary, in a formation regulation problem, it is not necessary since small perturbations from the nominal condition, in which the vehicles are in formation, are considered. A common origin is also not necessary if the relative distance to neighbors or a leader is used for regulation. Under these circumstances, the system theoretic control algorithms are applicable to a formation regulation problem where the vehicle models have six degrees of freedom. We will use a realistic six-degree-of-freedom model and investigate stability of a fleet using results from decentralized control theory. We will show that the leader-follower control algorithm does not have any unstable fixed modes if the followers are able to measure distance to the leader. We also show that the leader-follower control algorithm has fixed modes at the origin, indicating that the formation is marginally stable, when the relative distance measurements are not available. Multi-vehicle simulations are performed using a hybrid leader-follower control algorithm where each vehicle is given a desired trajectory to follow and adjusts its velocity to maintain a prescribed distance to the leader. Each vehicle is modeled as a three-degree-of-freedom system to investigate the vehicle’s motion in a horizontal plane. The examples show efficacy of the analysis.


2018 ◽  
Vol 5 (4) ◽  
pp. 10-16
Author(s):  
Pham Huy Thoa

  In order to investigate different position control algorithms for numerical controlled machines and robots, a positional control system was built on the base of  a microcomputer. In part I, the paper presents the  observer algorithm for  state variable estimation and the state variable feedback control algorithm applied to the position control of a  particular machine-table. With the hardware and software structure of the microcomputer based digital system described in this paper different control algorithms can be  realized flexibly. The position control problem for the plant with variations or  uncertainties of  parameters and load characteristics will be reported in part II.


2008 ◽  
Vol 56 ◽  
pp. 182-187
Author(s):  
Antonio Occhiuzzi

Control algorithms for semi-active structural control system found in the scientific literature often rely on the choice of several parameters included in the control law. The present paper shows the preliminary conclusions of a study aiming to explain the weak dependency of the response reduction associated to semi-active control systems on the particular choice of the control algorithm adopted, provided that the relevant parameters of any control law be properly tuned.


Author(s):  
Liangming Chen ◽  
Zhongqi Sun ◽  
Chuanjiang Li ◽  
Baolong Zhu ◽  
Cheng Wang

This paper studies the affine formation control problem for a group of flying satellites with the performance of obstacle avoidance. Assuming that leader satellites can detect the locations of obstacles, we first investigate how to plan advisable trajectories for leader satellites such that they can smoothly pass through some specific types of obstacles by tracking the planned trajectories. Secondly, to enable follower satellites pass through the obstacles by following leader satellites' moving trajectories, a relationship between leader satellites' positions and follower satellites' desired positions is established by employing the affine formation approach. Then, a distributed formation control algorithm is proposed, which ensures all follower satellites converge to their desired positions. Moreover, the uncertainties and disturbances are considered in each satellite's motion dynamics, and are compensated by the designed adaptive laws. Finally, simulation examples are provided to validate the effectiveness of the proposed control algorithms.


2021 ◽  
pp. 107754632110004
Author(s):  
Zubair R Wani ◽  
Manzoor Tantray

The application and optimization of control systems with multiple magneto-rheological dampers integrated into a civil engineering structure is a challenging task. The performance of the control system is strongly linked with the location and arrangement of control devices, and the optimal placement of control devices is inherently linked with the performance objective of the control algorithm. Therefore, for semi-active control devices, the placement algorithm should be well rooted within the control algorithm, for effective structural control. This article proposes response-based adaptive control strategies embedded with the device location optimization algorithm. The acceleration and inter-story drift responses of the structure are considered as the performance objective for two separate control strategies. The flexibility of this approach lies in the fact that the design algorithm for control and location of magneto-rheological dampers can be engineered based on the performance criteria of the system. This study involves numerical simulation of an actual five-story framed structure. The simulation results indicated that the seismic performance of the structure is strongly linked with the number, placement of the magneto-rheological damper, and the performance objective of the control strategy used. Also, the configuration and corresponding control provided by the response-based adaptive strategies performed better than the configuration predicted by the benchmark genetic algorithm using the H2/LQG controller.


AIAA Journal ◽  
1996 ◽  
Vol 34 (10) ◽  
pp. 2149-2153 ◽  
Author(s):  
Xiaojian Liu ◽  
Junjiro Onoda

Sign in / Sign up

Export Citation Format

Share Document