Hybrid active mass damper (AMD) vibration suppression of nonlinear high-rise structure using fuzzy logic control algorithm under earthquake excitations

2010 ◽  
Vol 18 (6) ◽  
pp. 698-709 ◽  
Author(s):  
Luyu Li ◽  
Gangbing Song ◽  
Jinping Ou
2009 ◽  
Vol 147-149 ◽  
pp. 290-295 ◽  
Author(s):  
Bogdan Broel-Plater ◽  
Stefan Domek ◽  
Arkadiusz Parus

The paper deals with semi-active chatter absorber based on an electrodynamic transducer built around high-energy permanent magnets. Also, a fuzzy logic control system for the absorber control system has been designed. The principal advantage of fuzzy control is the possibility to implement practical experience gained by machine operators in the control algorithm. Hence, the possibility of factoring such quantities, as vibrations experienced by selected points of the machine-tool, and sound emitted by working machine into the analyzed chatter absorber fuzzy control system has been studied in the paper. The control system has been tested by way of simulation with the use of the process and cutting force models.


2021 ◽  
Vol 11 (6) ◽  
pp. 2468
Author(s):  
Ming-Hsiang Shih ◽  
Wen-Pei Sung

When high-rise buildings are shaken due to external forces, the facilities of the building can be damaged. A Tuned Mass Damper (TMD) can resolve this issue, but the seismic resistance of TMD is exhausted due to the detuning effect. The Impulsive Semi-Active Mass Damper (ISAMD) is proposed with fast coupling and decoupling at the active joint between the mass and structure to overcome the detuning effect. The seismic proof effects of a high-rise building with TMD and ISAMD were compared. The numerical analysis results indicate that: (1) the reduction ratio of the maximum roof displacement response and the mean square root of the displacement reduction ratio of the building with the ISAMD were higher than 30% and 60%, respectively; (2) the sensitivity of the efficiency index to the frequency ratio of the ISAMD was very low, and detuning did not occur in the building with the ISAMD; (3) to achieve stable seismic resistance of the ISAMD, its frequency ratio should be between 2 and 4; (4) the amount of displacement of the control mass block of the ISAMD can be reduced by enhancing the stiffness of the auxiliary spring of the ISAMD; and (5) the proposed ISAMD has a stable control effect, regardless of the earthquake distance.


2017 ◽  
Vol 36 (2) ◽  
pp. 594 ◽  
Author(s):  
I. H. Usoro ◽  
U. T. Itaketo ◽  
M. A. Umoren

Sign in / Sign up

Export Citation Format

Share Document