scholarly journals A Small Molecule Modulator of Prion Protein Increases Human Mesenchymal Stem Cell Lifespan, Ex Vivo Expansion, and Engraftment to Bone Marrow in NOD/SCID Mice

Stem Cells ◽  
2012 ◽  
Vol 30 (6) ◽  
pp. 1134-1143 ◽  
Author(s):  
Sindhu T. Mohanty ◽  
Claire J. Cairney ◽  
Andrew D. Chantry ◽  
Sanjeev Madan ◽  
James A. Fernandes ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1174-1174
Author(s):  
Taito Nishino ◽  
Atsushi Iwama

Abstract Abstract 1174 Ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) have recently been explored to optimize autologous and allogeneic HSPC transplantation and shown to be effective in the field of stem cell biology. However, to our knowledge, identification of culture conditions that allow HSPCs expansion and long-term hematopoietic reconstitution have remained incomplete, and clinical methods to expand human HSPCs have yet to be realized. In this study, we assumed that some small molecule compounds may preferentially activate signals that are required for optimal HSPC expansion and facilitate self-renewal of hematopoietic stem cells (HSCs). Thus, we evaluated the effects of several biologically active compounds on the ex vivo expansion of CD34+ hematopoietic stem and progenitor cells from human cord blood (hCB) and identified Garcinol, a plant-derived natural product as a novel modulator of HSPC proliferation. We cultured hCB CD34+ cells in serum-free medium supplemented with human thrombopoietin, human stem cell factor and Garcinol for 7 days and analyzed the cellular phenotype of the cultured cells by flow cytometry and colony assay. Although the total number of cells cultured with Garcinol was similar to those cultured without Garcinol, the cultures with Garcinol showed >2-fold increase in the number of CD34+CD38- hematopoietic stem and progenitor cells and contained 2-fold more high-proliferative-potential colony-forming cells (HPP-CFCs; >1mm in diameter) compared to control cultures. Correspondingly, SCID-repopulating cells (SRCs) were increased 2-fold during a 7-day culture with Garcinol compared to cultures without Garcinol. These findings suggest that Garcinol efficiently promotes the net expansion of HPSCs. To investigate the structure-activity relationship of Garcinol, we synthesized the chemical derivatives of Garcinol and evaluated the effect of Garcinol and its derivatives, Isogarcinol and O, O'-dimethylisogarcinol, on the proliferation of CD34+CD38- cells. Although Isogarcinol exhibited almost the same activity as Garcinol, O, O'-dimethyl isogarcinol was scarcely effective in the CD34+CD38- cell proliferation. Correspondingly, O, O'-dimethylisogarcinol had no effect on numbers of HPP-CFCs. These results indicate that dihydroxybenzoyl moiety is crucial for the positive effect of Gacinol on HSPCs.Garcinol has been reported to be a potent inhibitor of histone acetyltransferases (HAT). Thus, we estimated the HAT activity in cells treated with Garcinol and its derivatives. Garcinol and Isogarcinol inhibited HAT activity while O, O'-dimethylisogarcinol showed much less HAT inhibitory activity as compared to Garcinol and Isogarcinol, which suggested that HAT inhibitory activity of Garcinol is correlate with the expansion of HPSCs. We are now investigating gene expression profiling in cells cultured with Garcinol using DNA microarray analysis and Q-PCR. In conclusion, we have identified Garcinol, a plant-derived small-molecule compound, which exhibits inhibitory effect on HAT activity, as a novel stimulator of HSPC expansion. The results reported here indicate that Garcinol would be applied as a useful tool for the development of novel and efficient technologies for hematopoietic stem cell and gene therapies. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 80 (7) ◽  
pp. 710-716 ◽  
Author(s):  
F Hérodin ◽  
M Drouet

The sparing of viable hematopoietic stem and progenitor cells located in underexposed bone marrow territories associated with the relative radioresistance of certain stem cell populations is the rationale for autologous cell therapy consisting of ex vivo expansion of residual cells after collection postirradiation. The feasibility of this treatment mainly depends on time constraints and hematopoietic cell threshold. We showed in this study that in the absence of early-acting mobilizing agent administration, subliminar amounts of CD34+ cells can be collected (1 × 106 CD34+ cells/100 mL bone marrow or for 1 L apheresis) from 6-Gy gamma globally irradiated baboons. Residual CD34+ cells were successfully expanded in serum-free medium in the presence of antiapoptotic cytokine combination (stem cell factor + FLT-3 ligand + thrombopoietin + interleukin 3, 50 ng/mL each, i.e., 4F): KCD34+ = ×2.8 and ×13.7 (n = 2). Moreover, we demonstrated the short-term neutrophil engraftment potential of a low-size mixed expanded graft (1.5 × 106 final CD34+cells/kg) issued from the coculture of unirradiated (20%) and 2.5-Gy in vitro irradiated (80%) CD34+ cells on an allogeneic stromal cell layer in the presence of 4F. Further preclinical research needs to be performed to clearly establish this therapeutic approach that could be optimized by the early administration of antiapoptotic cytokines.Key words: ex vivo expansion, cytokine, cell therapy, bone marrow aplasia, irradiation, animal model.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43523 ◽  
Author(s):  
Andreia Madeira ◽  
Cláudia L. da Silva ◽  
Francisco dos Santos ◽  
Emilio Camafeita ◽  
Joaquim M. S. Cabral ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Zhuo Yu ◽  
Wenqian Yang ◽  
Xiaoxiao He ◽  
Chiqi Chen ◽  
Wenrui Li ◽  
...  

Bone marrow niche cells have been reported to fine-tune HSC stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2 (LILRB2). However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status and niche localization. Mechanistically, ANGPTL2 enhances PPARD expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.


2010 ◽  
Vol 82 (6) ◽  
pp. 1076-1087 ◽  
Author(s):  
Lusine Aghajanova ◽  
Jose A. Horcajadas ◽  
Francisco J. Esteban ◽  
Linda C. Giudice

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4816-4816
Author(s):  
Stephen L Fischer ◽  
Jacqueline M Fonseca ◽  
Yukang Zhao ◽  
Linda L. Kelley ◽  
Ramasamy Sakthivel

Abstract Abstract 4816 Hematopoietic stem cell (HSC) transplantation has become the standard of care for patients with hematologic cancers, anemia, and a variety of other malignant and non-malignant disorders, with greater than 50,000 such procedures being performed globally each year, according to the Worldwide Network for Blood and Marrow Transplantation. Although mobilized peripheral blood (MPB) has become a preferred source of HSCs for transplants, bone marrow (BM) and umbilical cord blood (UCB) are also frequently utilized. Regardless of source, several groups have reported that grafts containing lower total nucleated cell (TNC) and CD34+ cell doses contribute to delayed engraftment and higher graft failure rate. Therefore, methods to increase the total cell number while maintaining the progenitor phenotype, especially the CD34+ progenitor cells, from individual grafts would have a significant clinical impact. Ex vivo expansion of HSCs prior to transplantation is one approach that offers tremendous promise for increasing cell doses and improving clinical outcomes. In many ex vivo culture systems, HSCs are cultured as a suspension cells and cultured in the presence of various media additives that act to enhance cell proliferation while reducing differentiation. An often-overlooked factor influencing fate decisions is the interaction of HSCs with a substrate. In the natural bone marrow microenvironment, HSCs maintain close contact with a complex network of stromal cells and extracellular matrix, likely indicating that cell-cell and cell-matrix interactions play an important role in maintaining their stem cell phenotype. With the goal of mimicking the bone marrow stem cell niche, Arteriocyte, Inc. has developed a 3-D NANEX nanofiber based cell culture substrate. The functionalized NANEX substrate is designed to provide topographical and substrate-immobilized biochemical cues that act in synergy with media additives to enhance HSC proliferation while maintain the progenitors stem cell phenotype. Here, we present our recent work with the NANEX platform towards comparing and achieving a high yield ex vivo expansion of CD34+ cells from MPB, BM, and UCB. Additionally, through the use of flow cytometry and CFU assays, we quantify and characterize NANEX-expanded cells from each source. Furthermore, we compared NANEX to a variety of commercially available products and demonstrate that NANEX significantly improves expansion and reduces phenotype loss during ex vivo culture. Our data indicates that NANEX technology provides a robust ex vivo expansion of HSCs and, with further GMP and clinical development, offers great potential for clinical applications. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 29 (2) ◽  
pp. 224-235 ◽  
Author(s):  
Stefan Fickert ◽  
Ute Schröter-Bobsin ◽  
Anna-Friederike Groß ◽  
Ute Hempel ◽  
Claudia Wojciechowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document