scholarly journals Concise Review: Multidimensional Regulation of the Hematopoietic Stem Cell State

Stem Cells ◽  
2011 ◽  
Vol 30 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Il-Hoan Oh ◽  
R.Keith Humphries
Blood ◽  
2021 ◽  
Author(s):  
Bernhard Lehnertz ◽  
Jalila Chagraoui ◽  
Tara MacRae ◽  
Elisa Tomellini ◽  
Sophie Corneau ◽  
...  

Hematopoietic stem cells (HSCs) sustain blood cell homeostasis throughout life and can regenerate all blood lineages following transplantation. Despite this clear functional definition, highly enriched isolation of human HSCs can currently only be achieved through combinatorial assessment of multiple surface antigens. While several transgenic HSC reporter mouse strains have been described, no analogous approach to prospectively isolate human HSCs has been reported. To identify genes with the most selective expression in human HSCs, we profiled population- and single-cell transcriptomes of un-expanded and ex vivo cultured cord blood-derived HSPCs as well as peripheral blood, adult bone marrow, and fetal liver. Based on these analyses, we propose the master transcription factor HLF (Hepatic Leukemia Factor) as one of the most specific HSC marker genes. To directly track its expression in human hematopoietic cells, we developed a genomic HLF reporter strategy, capable of selectively labeling the most immature blood cells based on a single engineered parameter. Most importantly, HLF-expressing cells comprise all of the stem cell activity in culture and in vivo during serial transplantation. Taken together, these results experimentally establish HLF as a defining gene of the human hematopoietic stem cell state and outline a new approach to continuously mark these cells with high fidelity.


Cell Research ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 3-4 ◽  
Author(s):  
David JHF Knapp ◽  
Connie J Eaves

2020 ◽  
Author(s):  
Bernhard Lehnertz ◽  
Jalila Chagraoui ◽  
Tara MacRae ◽  
Elisa Tomellini ◽  
Sophie Corneau ◽  
...  

Hematopoietic stem cells (HSCs) sustain blood cell homeostasis throughout life and are able to regenerate all blood lineages following transplantation. Despite this clear functional definition, highly enriched isolation of human HSCs can currently only be achieved through combinatorial assessment of multiple surface antigens. While a number of transgenic HSC reporter mouse strains have been described, no analogous approach to prospectively isolate human HSCs has been reported. To identify genes with the most selective expression in human HSCs, we profiled population- and single-cell transcriptomes of fresh and ex vivo cultured cord blood derived HSPCs as well as peripheral blood, adult bone marrow and fetal liver. Based on these analyses, we propose the master transcription factor HLF (Hepatic Leukemia Factor) as one of the most specific HSC marker genes. To directly track its expression in human hematopoietic cells, we developed a genomic HLF reporter strategy, capable of selectively labeling the most immature blood cells on the basis of a single engineered parameter. Most importantly, HLF-expressing cells comprise all of the stem cell activity in culture and in vivo during serial transplantation. Taken together, these results experimentally establish HLF as a defining gene of the human hematopoietic stem cell state and outline a new approach to continuously mark these cells with high fidelity.


Stem Cells ◽  
2013 ◽  
Vol 31 (7) ◽  
pp. 1245-1251 ◽  
Author(s):  
Stéphanie C. De Barros ◽  
Valérie S. Zimmermann ◽  
Naomi Taylor

Immunity ◽  
2016 ◽  
Vol 45 (2) ◽  
pp. 346-357 ◽  
Author(s):  
Trine A. Kristiansen ◽  
Elin Jaensson Gyllenbäck ◽  
Alya Zriwil ◽  
Tomas Björklund ◽  
Jeremy A. Daniel ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 466-466 ◽  
Author(s):  
Eric R. Lechman ◽  
Kristin J. Hope ◽  
Fernando J. Suarez Saiz ◽  
Katsuto Takenaka ◽  
Carlo M. Croce ◽  
...  

Abstract MicroRNAs (miRNAs) are a new class of non-coding small RNAs that negatively regulate the expression of protein-encoding genes. Mature miRNAs are excised sequentially from primary miRNA (pri-miRNA) foldback precursor transcripts, and regulate gene expression at the post-transcriptional level. miRNAs functionally suppress gene expression by either inhibition of protein synthesis or by direct cleavage of the target mRNA. miRNA expression is tissue and developmental stage restricted, suggesting important roles in tissue specification and/or cell lineage determination. miRNAs are implicated in the regulation of diverse processes including cell growth control, apoptosis, fat metabolism and insulin secretion, and may be involved in the maintenance of the embryonic stem cell state. Several recent lines of evidence suggest a role for miRNAs in hematological malignancies. Many characterized miRNAs are located at fragile sites, minimal loss of heterozygosity regions, minimal regions of amplification or common breakpoint regions in human cancers. For example, chromosomal translocation t(8;17) in an aggressive B-cell leukemia results in fusion of miR-142 precursor and a truncated MYC gene. Furthermore, both miR-15 and miR-16 are located within a 30 kb deletion in CLL, and in most cases of this cancer both genes are deleted or underexpressed. In addition, mice transplanted with hematopoietic stem cells (HSC) overexpressing both c-Myc and the miR-17–92 polycistron developed cancers earlier with a more aggressive nature when compared to lymphomas generated by c-myc alone. To address the role of miRNAs in the regulation and maintenance of the hematopoietic stem cell state and leukemogenesis, we sorted 6 primary AML patient samples into 4 populations based on the expression of CD34/CD38 and performed miRNA array analysis. We identified a subset of miRNAs whose expression profile could discriminate the CD34+/CD38- fractions from more mature populations. In particular, BIC/miR-155 was found to be over-expressed in leukemic stem cells (LSC). Validation by qRT-PCR revealed this expression pattern in 5 of the 6 sorted AML samples. Furthermore, within umbilical cord blood (CB) cells, BIC/miR-155 is more highly expressed in the primitive CD34+38- fraction as compared to mature sub-fractions as assessed by Affymetrix microarray. miRNA array analysis also revealed elevated levels of miR-155 in bulk primary AMLs as compared to normal BM. Intriguingly, BIC/miR-155 was first identified as a common retroviral insertion site in avian leucosis virus induced B cell lymphomas, and BIC/miR-155 overexpression has been observed in all subtypes of Hodgkin’s lymphoma. To test the hypothesis that miR-155 is important in LSC/HSC function, we designed lentiviral vectors for RNAi mediated knockdown of BIC/miR-155. Knockdown of BIC/miR-155 within a novel CD34+ leukemic cell line resulted in a loss of CD34 expression and reduced proliferative potential. Additionally, knockdown within CB led to alterations in colony forming capacity. Additionally, we have recently generated lentiviral vectors for the enforced overexpression of BIC/miR-155. In vivo studies to investigate the effects of BIC/miR-155 over-expression and knockdown are ongoing and will be discussed.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2444-2444
Author(s):  
Il-Hoan Oh ◽  
Kim Tae-Min ◽  
Jae-Seung Shim

Abstract Multiple transcription factors (TFs) that regulate the self-renewal/stem cell state of hematopoietic stem cells (HSCs) have been identified, but understanding the molecular interplay of these TFs for their functional coordination remains a challenging issue. In this study, we investigated the functional integration and transcriptional coordination of STAT3 and HoxB4, which are TFs known to have similar effects on the self-renewal of HSCs. We found that while STAT3 (STAT3-C) or HoxB4 similarly enhanced the in vitro self-renewal and in vivo repopulating activities of HSCs, simultaneous transduction of both STAT3-C and HoxB4 did not have any additive enhancing effects. In contrast, the overexpression of HoxB4 caused a ligand-independent Tyr-phosphorylation in STAT3, and the inhibition of the STAT3 activity in HoxB4-overexpressing bone marrow cells significantly abrogated the enhancing effects of HoxB4 on both the bone marrow repopulation and maintenance of the undifferentiated state, revealing a molecular integration of these two TFs for HSC self-renewal. Expression microarray analysis revealed a significant overlap of the transcriptomes regulated by STAT3 and HoxB4 in undifferentiated hematopoietic cells. Moreover, a gene set enrichment analysis (GSEA) for TFs that can recapitulate the transcriptional changes induced by HoxB4 or STAT3 showed significant overlap in the candidate TFs. Interestingly, among these identified TFs were the puripotency-related genes, Oct-4 and Nanog. These results indicate the functional integration of tissue-specific TFs for HSC self-renewal and provide insights into the functional convergence of various TFs towards a conserved transcription program for the stem cell state. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 4 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Martin Wahlestedt ◽  
Cornelis Jan Pronk ◽  
David Bryder

Sign in / Sign up

Export Citation Format

Share Document