Top cast effect: Influence of bond length on splitting mode failure

2021 ◽  
Author(s):  
John Cairns
Keyword(s):  
2017 ◽  
Author(s):  
Olivier Charles Gagné

Bond-length distributions have been examined for eighty-four configurations of the lanthanide ions and twenty-two configurations of the actinide ions bonded to oxygen. The lanthanide contraction for the trivalent lanthanide ions bonded to O<sup>2-</sup> is shown to vary as a function of coordination number and to diminish in scale with increasing coordination number.


Author(s):  
Olivier Charles Gagné ◽  
Frank Christopher Hawthorne

Bond-length distributions are examined for thirty-three configurations of the metalloid ions and fifty-six configurations of the post-transition-metal ions bonded to oxygen. Lone-pair stereoactivity is discussed.


Author(s):  
Olivier Charles Gagné ◽  
Frank Christopher Hawthorne

Bond-length distributions are examined for thirty-three configurations of the metalloid ions and fifty-six configurations of the post-transition-metal ions bonded to oxygen. Lone-pair stereoactivity is discussed.


Author(s):  
Olivier Charles Gagné ◽  
Frank Christopher Hawthorne

Bond-length distributions are examined for three configurations of the H+ ion, sixteen configurations of the group 14-16 non-metal ions and seven configurations of the group 17 ions bonded to oxygen. Lone-pair stereoactivity for ions bonded to O<sup>2-</sup> is discussed, as well as the polymerization of the PO<sub>4</sub> group.


2018 ◽  
Author(s):  
Yusuke Ishigaki ◽  
Takuya Shimajiri ◽  
Takashi Takeda ◽  
Ryo Katoono ◽  
Takanori Suzuki
Keyword(s):  

Author(s):  
Gyuseung Han ◽  
In Won Yeu ◽  
Kun Hee Ye ◽  
Seung-Cheol Lee ◽  
Cheol Seong Hwang ◽  
...  

Through DFT calculations, a Be0.25Mg0.75O superlattice having long apical Be–O bond length is proposed to have a high bandgap (>7.3 eV) and high dielectric constant (∼18) at room temperature and above.


2009 ◽  
Vol 131 (17) ◽  
pp. 6099-6101 ◽  
Author(s):  
Shino Ohira ◽  
Joel M. Hales ◽  
Karl J. Thorley ◽  
Harry L. Anderson ◽  
Joseph W. Perry ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Felix Lederle ◽  
Eike G. Hübner

Abstract3D models of chemical structures are an important tool for chemistry lectures and exercises. Usually, simplified models based on standard bond length and angles are used. These models allow for a visualized discussion of (stereo)chemical aspects, but they do not represent the true spatial conditions. 3D-printing technologies facilitate the production of scale models. Several protocols describe the process from X-ray structures, calculated geometries or virtual molecules to printable files. In contrast, only a few examples describe the integration of scaled models in lecture courses. True bond angles and scaled bond lengths allow for a detailed discussion of the geometry and parameters derived therefrom, for example double bond character, aromaticity and many more. Here, we report a complete organic chemistry/stereochemistry lecture course and exercise based on a set of 37 scale models made from poly(lactic acid) as sustainable material. All models have been derived from X-ray structures and quantum chemical calculations. Consequently, the models reflect the true structure as close as possible. A fixed scaling factor of 1 : 1.8·108 has been applied to all models. Hands-on measuring of bond angles and bond length leads to an interactive course. The course has been evaluated with a very positive feedback.


Sign in / Sign up

Export Citation Format

Share Document