scholarly journals Harnessing expert knowledge: Defining a Bayesian network decision model with limited data-Model structure for the vibration qualification problem

2018 ◽  
Vol 21 (4) ◽  
pp. 285-294 ◽  
Author(s):  
Davinia B. Rizzo ◽  
Mark R. Blackburn
Author(s):  
Haozhe Cong ◽  
Cong Chen ◽  
Pei-Sung Lin ◽  
Guohui Zhang ◽  
John Milton ◽  
...  

Highway traffic incidents induce a significant loss of life, economy, and productivity through injuries and fatalities, extended travel time and delay, and excessive energy consumption and air pollution. Traffic emergency management during incident conditions is the core element of active traffic management, and it is of practical significance to accurately understand the duration time distribution for typical traffic incident types and the factors that influence incident duration. This study proposes a dual-learning Bayesian network (BN) model to estimate traffic incident duration and to examine the influence of heterogeneous factors on the length of duration based on expert knowledge of traffic incident management and highway incident data collected in Zhejiang Province, China. Fifteen variables related to three aspects of traffic incidents, including incident information, incident consequences, and rescue resources, were included in the analysis. The trained BN model achieves favorable performance in several areas, including classification accuracy, the receiver operating characteristic (ROC) curve, and the area under curve (AUC) value. A classification matrix, and significant variables and their heterogeneous influences are identified accordingly. The research findings from this study provide beneficial reference to the understanding of decision-making in traffic incident response and process, active traffic incident management, and intelligent transportation systems.


2020 ◽  
Author(s):  
Sanya B. Taneja ◽  
Gerald P. Douglas ◽  
Gregory F. Cooper ◽  
Marian G. Michaels ◽  
Marek J. Druzdzel ◽  
...  

Abstract Background: Malaria is a major cause of death in children under five years old in low- and middle-income countries such as Malawi. Accurate diagnosis and management of malaria can help reduce the global burden of childhood morbidity and mortality. Trained healthcare workers in rural health centers manage malaria with limited supplies of malarial diagnostic tests and drugs for treatment. A clinical decision support system that integrates predictive models to provide an accurate prediction of malaria based on clinical features could aid healthcare worker in judicious use of testing and treatment. We developed Bayesian network (BN) models to predict the probability of malaria from clinical features and an illustrative decision tree to model the decision to use or not use a malaria rapid diagnostic test (mRDT).Methods: We developed two BN models from data that were collected in a national survey of outpatient encounters of children in Malawi. The target diagnosis is taken as the result of mRDT. The first BN model was created manually with expert knowledge, and the second model was derived using an automated method followed by modifications guided by expert knowledge. The performance of the BN models was compared to other statistical models on a range of performance metrics. We developed a decision tree that integrates predictions from these predictive models with the costs of mRDT and a course of recommended treatment. Results: Compared to the logistic regression and random forest models, the BN models had similar accuracy of 64% but had higher sensitivity at the cost of lower specificity at the default threshold. Sensitivity analysis of the decision tree showed that at low (below 0.04) and high (above 0.4) probabilities of malaria in a child, the preferred decision that minimizes expected costs is not to perform mRDT.Conclusion: In resource-constrained settings, judicious use of mRDT is important. Predictive models in combination with decision analysis can provide personalized guidance on when to use mRDT in the management of childhood malaria. BN models can be efficiently derived from data to support such clinical decision making.


2021 ◽  
Vol 2021 (1) ◽  
pp. 1054-1064
Author(s):  
Salwa Rizqina Putri ◽  
Thosan Girisona Suganda ◽  
Setia Pramana

Untuk mendukung pertumbuhan ekonomi hijau Indonesia, diperlukan analisis lebih lanjut terkait aktivitas ekonomi di masa pandemi dan keterkaitannya dengan kondisi lingkungan. Penelitian ini bertujuan untuk menerapkan pendekatan Bayesian Network dalam memodelkan kondisi ekonomi hijau Indonesia di masa pandemi berdasarkan variabel-variabel yang disinyalir dapat berpengaruh seperti aktivitas ekonomi, kualitas udara, tingkat mobilitas penduduk, dan kasus positif COVID-19 yang diperoleh melalui big data. Model Bayesian Network yang dikonstruksi secara manual dengan algoritma Maximum Spanning Tree dipilih sebagai model terbaik dengan rata-rata akurasi 5-cross validation dalam memprediksi empat kelas PDRB sebesar 0,83. Model terbaik yang dipilih menunjukkan bahwa kondisi ekonomi Indonesia di era pandemi secara langsung dipengaruhi oleh intensitas cahaya malam (NTL) yang menunjukkan aktivitas ekonomi, kualitas udara (AQI), dan kasus positif COVID-19. Analisis parameter learning menunjukkan bahwa pertumbuhan ekonomi provinsi-provinsi Indonesia masih cenderung belum sejalan dengan terpeliharanya kualitas udara sehingga usaha untuk mencapai kondisi ekonomi hijau masih harus ditingkatkan.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xuefeng Yan ◽  
Yong Zhou ◽  
Yan Wen ◽  
Xudong Chai

The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation.


Author(s):  
Sumit Singh ◽  
Essam Shehab ◽  
Nigel Higgins ◽  
Kevin Fowler ◽  
Dylan Reynolds ◽  
...  

Digital Twin (DT) is the imitation of the real world product, process or system. Digital Twin is the ideal solution for data-driven optimisations in different phases of the product lifecycle. With the rapid growth in DT research, data management for digital twin is a challenging field for both industries and academia. The challenges for DT data management are analysed in this article are data variety, big data & data mining and DT dynamics. The current research proposes a novel concept of DT ontology model and methodology to address these data management challenges. The DT ontology model captures and models the conceptual knowledge of the DT domain. Using the proposed methodology, such domain knowledge is transformed into a minimum data model structure to map, query and manage databases for DT applications. The proposed research is further validated using a case study based on Condition-Based Monitoring (CBM) DT application. The query formulation around minimum data model structure further shows the effectiveness of the current approach by returning accurate results, along with maintaining semantics and conceptual relationships along DT lifecycle. The method not only provides flexibility to retain knowledge along DT lifecycle but also helps users and developers to design, maintain and query databases effectively for DT applications and systems of different scale and complexities.


2017 ◽  
Vol 26 (1) ◽  
pp. 10 ◽  
Author(s):  
P. Papakosta ◽  
G. Xanthopoulos ◽  
D. Straub

Loss prediction models are an important part of wildfire risk assessment, but have received only limited attention in the scientific literature. Such models can support decision-making on preventive measures targeting fuels or potential ignition sources, on fire suppression, on mitigation of consequences and on effective allocation of funds. This paper presents a probabilistic model for predicting wildfire housing loss at the mesoscale (1 km2) using Bayesian network (BN) analysis. The BN enables the construction of an integrated model based on causal relationships among the influencing parameters jointly with the associated uncertainties. Input data and models are gathered from literature and expert knowledge to overcome the lack of housing loss data in the study area. Numerical investigations are carried out with spatiotemporal datasets for the Mediterranean island of Cyprus. The BN is coupled with a geographic information system (GIS) and the resulting estimated house damages for a given fire hazard are shown in maps. The BN model can be attached to a wildfire hazard model to determine wildfire risk in a spatially explicit manner. The developed model is specific to areas with house characteristics similar to those found in Cyprus, but the general methodology is transferable to any other area, as well as other damages.


2012 ◽  
Vol 15 (4) ◽  
pp. A72-A73
Author(s):  
M. Castillo ◽  
A.J. Bernal ◽  
R. Fajardo

2020 ◽  
Vol 12 (2) ◽  
pp. 32-38
Author(s):  
Asto Buditjahjanto

The determination of a disease syndrome in the TCM is difficult enough to determine because it requires a lot of experience in observing patients' symptoms that appear in disease syndrome and their disease syndrome history. Symptoms that appear in one disease syndrome are varied and can also appear in other disease syndromes. This research limits the determination of the type of syndrome only in the heart organ. The purpose of this study is to determine the type of heart syndrome in TCM by using Bayesian Networks. Bayesian Networks is used because it has the advantage of adapting expert knowledge toward the preferences of symptoms that arise at a type of heart syndrome. The expert's preference is in the weights that act as prior probabilities that are used as the basis for calculations on the Bayesian Networks. The results showed that the Bayesian Networks can be used to determine the type of heart syndrome well. The results of trials on 7 patients yield the same diagnosis between the doctor's diagnosis and the Bayesian Networks calculation


Sign in / Sign up

Export Citation Format

Share Document