Short-term extreme response analysis of a jacket supporting an offshore wind turbine

Wind Energy ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 87-104 ◽  
Author(s):  
Nilanjan Saha ◽  
Zhen Gao ◽  
Torgeir Moan ◽  
Arvid Naess
Author(s):  
Zhi Zong ◽  
Guanqing Hu ◽  
Yichen Jiang ◽  
Li Zou

Abstract To predict the short-term motion responses of floating offshore wind turbine under extreme wind-wave excitation, a numerical model based on the two-phase flow finite volume method was developed. In this paper, uni-directional irregular waves composed of 100 cosine waves with equal frequency interval were simulated by the wave forcing technique, resulting in the measured spectrum in accordance with the target spectrum. Then, a 100-seconds wave segment containing the maximum wave height was selected for fully coupled dynamic analysis of the OC4-DeepCwind system in CFD, and the results were compared with those of FAST under the same wind and wave sea state. It was found that the motion responses of heave and pitch motion responses predicted by two methods agree well. The second-order slow drift force generated in CFD led to the difference in surge motion. The predicted sway, roll, and yaw motions by these two methods were also compared. In addition, significant differences between two methods’ predictions on mooring tension were found.


Author(s):  
Xiaolu Chen ◽  
Zhiyu Jiang ◽  
Qinyuan Li ◽  
Ye Li

Abstract Evaluation of dynamic responses under extreme environmental conditions is important for the structural design of offshore wind turbines. Previously, a modified environmental contour method has been proposed to estimate extreme responses. In the method, the joint distribution of environmental variables near the cut-out wind speed is used to derive the critical environmental conditions for a specified return period, and the turbulence intensity (TI) of wind is assumed to be a deterministic value. To address more realistic wind conditions, this paper considers the turbulence intensity as a stochastic variable and investigates the impact on the modified environmental contour. Aerodynamic simulations are run over a range of mean wind speeds at the hub height from 9–25 m/s and turbulence levels between 9%–15%. Dynamic responses of a monopile offshore wind turbine under extreme conditions were studied, and the importance of considering the uncertainties associated with wind turbulence is highlighted. A case of evaluating the extreme response for 50-year environmental contour is given as an example of including TI as an extra variant in environmental contour method. The result is compared with traditional method in which TI is set as a constant of 15%. It shows that taking TI into consideration based on probabilistic method produces a lower extreme response prediction.


Author(s):  
Tomoaki Utsunomiya ◽  
Iku Sato ◽  
Koji Tanaka

Abstract When using synthetic fiber rope as a mooring line of a floating body such as floating offshore wind turbine (FOWT), it is necessary to carry out characteristic test and to grasp well about strength, stiffness, durability against monotonic and cyclic loadings. In this research, we have made characteristics test of polyester rope based on ISO. Next, based on the obtained characteristic values (mass, stiffness, strength, etc.), the dynamic response analysis of the floating body-mooring system was carried out and the mooring design was carried out. It was actually operated as a floating body mooring line for about 1 year. During the operation period, no abnormality was found, nor appearance damage occurred. After completion of operation for 1 year, the polyester rope was collected and residual strength test was carried out. As a result, no serious deterioration situation such as infiltration of marine organisms or fracture of the strands due to wear between fibers was observed at all. On the other hand, with respect to durability, it was found that the strength reduction was 2.9% from the initial state with respect to the breaking strength.


Sign in / Sign up

Export Citation Format

Share Document