Expression ofCandida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors

Yeast ◽  
2007 ◽  
Vol 24 (10) ◽  
pp. 883-900 ◽  
Author(s):  
Benoit Pelletier ◽  
Alexandre Mercier ◽  
Mathieu Durand ◽  
Chardeen Peter ◽  
Mehdi Jbel ◽  
...  
2009 ◽  
Vol 284 (36) ◽  
pp. 23989-23994 ◽  
Author(s):  
Aslihan Ors ◽  
Margaret Grimaldi ◽  
Yuu Kimata ◽  
Caroline R. M. Wilkinson ◽  
Nic Jones ◽  
...  

2005 ◽  
Vol 9 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Ye Jin ◽  
Joel J. Mancuso ◽  
Satoru Uzawa ◽  
Daniela Cronembold ◽  
W. Zacheus Cande

2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Qiannan Liu ◽  
Fan Yao ◽  
Guanglie Jiang ◽  
Min Xu ◽  
Si Chen ◽  
...  

ABSTRACT The fight against resistance to antifungal drugs requires a better understanding of the underlying cellular mechanisms. In order to gain insight into the mechanisms leading to antifungal drug resistance, we performed a genetic screen on a model organism, Schizosaccharomyces pombe, to identify genes whose overexpression caused resistance to antifungal drugs, including clotrimazole and terbinafine. We identified the phb2+ gene, encoding a highly conserved mitochondrial protein, prohibitin (Phb2), as a novel determinant of reduced susceptibility to multiple antifungal drugs. Unexpectedly, deletion of the phb2+ gene also exhibited antifungal drug resistance. Overexpression of the phb2+ gene failed to cause drug resistance when the pap1+ gene, encoding an oxidative stress-responsive transcription factor, was deleted. Furthermore, pap1+ mRNA expression was significantly increased when the phb2+ gene was overexpressed or deleted. Importantly, either overexpression or deletion of the phb2+ gene stimulated the synthesis of NO and reactive oxygen species (ROS), as measured by the cell-permeant fluorescent NO probe DAF-FM DA (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate) and the ROS probe DCFH-DA (2′,7′-dichlorodihydrofluorescein diacetate), respectively. Taken together, these results suggest that Phb2 dysfunction results in reduced susceptibility to multiple antifungal drugs by increasing NO and ROS synthesis due to dysfunctional mitochondria, thereby activating the transcription factor Pap1 in fission yeast.


1992 ◽  
Vol 12 (12) ◽  
pp. 5474-5484 ◽  
Author(s):  
T Toda ◽  
M Shimanuki ◽  
Y Saka ◽  
H Yamano ◽  
Y Adachi ◽  
...  

The fission yeast pap1+ gene encodes an AP-1-like transcription factor that contains a leucine zipper motif. We identified a target gene of pap1, the p25 gene. The 5' upstream region of the p25 gene contains an AP-1 site, and by DNase I footprint analysis, we showed that the pap1 protein binds to the AP-1 site as well as to a 14-bp palindrome sequence. p25 is overproduced when the pap1+ gene is overexpressed, whereas p25 is not produced at all in the pap1 deletion mutant. p25 was previously found to be overproduced in strains carrying cold-sensitive crm1 mutations whose gene product is essential for viability and is thought to play an important role in maintenance of a proper chromosomal architecture. Deletion and site-directed mutagenesis of sequences upstream of the p25 gene demonstrated that the AP-1 site as well as the palindrome sequence are crucial for transcriptional activation either by pap1 overproduction or by the cold-sensitive crm1 mutation; pap1+ is apparently negatively regulated by crm1+. Moreover, we found that cold-sensitive crm1 mutations are suppressed by the deletion of pap1+, further indicating a close relationship between crm1+ and pap1+. The crm1 protein is highly conserved; the budding yeast homolog, CRM1, which complements the fission yeast cold-sensitive crm1 mutation, was isolated and found to also be essential for viability. These results suggest the functional importance of chromosome structure on the regulation of gene expression through the pap1 transcription factor.


1997 ◽  
Vol 17 (6) ◽  
pp. 3356-3363 ◽  
Author(s):  
G Degols ◽  
P Russell

Exposure of mammalian cells to UV irradiation or alkylating agents leads to the activation of the c-Jun N-terminal kinase and p38 stress-activated protein kinase cascades, phosphorylation of c-Jun and ATF-2 bZIP transcription factors, and finally to selective induction of gene expression. This UV response is believed to be crucially important for cell survival, although conclusive evidence is lacking. Here, we address this issue by investigating a homologous UV response pathway in the fission yeast Schizosaccharomyces pombe. In fission yeast cells, UV irradiation induces activation of Spc1 stress-activated protein kinase, which in turn phosphorylates the Atf1 bZIP transcription factor. spc1 mutants are hypersensitive to killing by UV at a level equivalent to some checkpoint rad mutants. Whereas checkpoint rad mutants fail to arrest division in response to DNA damage, spc1 mutants are defective at resuming cell division after UV exposure. Levels of basal and UV-induced transcription of ctt1+, which encodes a catalase believed important for combating oxidative stress caused by UV, are extremely low in spc1 mutants. Atf1 is required for UV-induced transcription of ctt1+, but atf1 mutants are not hypersensitive to killing by UV. This surprising finding is explained by the observation that ctt1+ basal expression is unaffected in atf1 single mutant and spc1 atf1 double mutant cells, suggesting that unphosphorylated Atf1 represses ctt1+ expression in spc1 cells. In fact, the level of UV sensitivity of spc1 atf1 double mutant cells is intermediate between those of the wild type and spc1 mutants. These findings suggest the following. (i) Key properties of UV response mechanisms are remarkably similar in mammals and S. pombe. (ii) Activation of Spc1 kinase greatly enhances survival of UV-irradiated cells. (iii) Induction of gene expression by activation of Atf1 may not be the most important mechanism by which stress-activated kinases function in the UV response.


Sign in / Sign up

Export Citation Format

Share Document