A Minimum Principle and a Generalized Bang-Bang-Principle for a Distributed Optimal Control Problem with Constraints on Control and State

Author(s):  
F. Tröltzsch
Analysis ◽  
2020 ◽  
Vol 40 (3) ◽  
pp. 127-150
Author(s):  
Tania Biswas ◽  
Sheetal Dharmatti ◽  
Manil T. Mohan

AbstractIn this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the controlled nonlocal Cahn–Hilliard–Navier–Stokes equations. We describe the first order necessary conditions of optimality via the Pontryagin minimum principle and prove second order necessary and sufficient conditions of optimality for the problem.


2016 ◽  
Vol 24 (11) ◽  
pp. 2149-2164 ◽  
Author(s):  
Majid Darehmiraki ◽  
Mohammad Hadi Farahi ◽  
Sohrab Effati

We use a hybrid local meshless method to solve the distributed optimal control problem of a system governed by parabolic partial differential equations with Caputo fractional time derivatives of order α ∈ (0, 1]. The presented meshless method is based on the linear combination of moving least squares and radial basis functions in the same compact support, this method will change between interpolation and approximation. The aim of this paper is to solve the system of coupled fractional partial differential equations, with necessary and sufficient conditions, for fractional distributed optimal control problems using a combination of moving least squares and radial basis functions. To keep matters simple, the problem has been considered in the one-dimensional case, however the techniques can be employed for both the two- and three-dimensional cases. Several test problems are employed and results of numerical experiments are presented. The obtained results confirm the acceptable accuracy of the proposed method.


2021 ◽  
Author(s):  
Etienne Bertin ◽  
Elliot Brendel ◽  
Bruno Hérissé ◽  
Julien Alexandre dit Sandretto ◽  
Alexandre Chapoutot

An interval method based on the Pontryagin Minimum Principle is proposed to enclose the solutions of an optimal control problem with embedded bounded uncertainties. This method is used to compute an enclosure of all optimal trajectories of the problem, as well as open loop and closed loop enclosures meant to enclose a concrete system using an optimal control regulator with inaccurate knowledge of the parameters. The differences in geometry of these enclosures are exposed, as well as some applications. For instance guaranteeing that the given optimal control problem will yield a satisfactory trajectory for any realization of the uncertainties or on the contrary that the problem is unsuitable and needs to be adjusted.


Robotica ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 137-152
Author(s):  
Hamidreza Heidari ◽  
Martin Saska

SUMMARYQuadrotors are unmanned aerial vehicles with many potential applications ranging from mapping to supporting rescue operations. A key feature required for the use of these vehicles under complex conditions is a technique to analytically solve the problem of trajectory planning. Hence, this paper presents a heuristic approach for optimal path planning that the optimization strategy is based on the indirect solution of the open-loop optimal control problem. Firstly, an adequate dynamic system modeling is considered with respect to a configuration of a commercial quadrotor helicopter. The model predicts the effect of the thrust and torques induced by the four propellers on the quadrotor motion. Quadcopter dynamics is described by differential equations that have been derived by using the Newton–Euler method. Then, a path planning algorithm is developed to find the optimal trajectories that meet various objective functions, such as fuel efficiency, and guarantee the flight stability and high-speed operation. Typically, the necessary condition of optimality for a constrained optimal control problem is formulated as a standard form of a two-point boundary-value problem using Pontryagin’s minimum principle. One advantage of the proposed method can solve a wide range of optimal maneuvers for arbitrary initial and final states relevant to every considered cost function. In order to verify the effectiveness of the presented algorithm, several simulation and experiment studies are carried out for finding the optimal path between two points with different objective functions by using MATLAB software. The results clearly show the effect of the proposed approach on the quadrotor systems.


2018 ◽  
Vol 24 (3) ◽  
pp. 1181-1206 ◽  
Author(s):  
Susanne C. Brenner ◽  
Thirupathi Gudi ◽  
Kamana Porwal ◽  
Li-yeng Sung

We design and analyze a Morley finite element method for an elliptic distributed optimal control problem with pointwise state and control constraints on convex polygonal domains. It is based on the formulation of the optimal control problem as a fourth order variational inequality. Numerical results that illustrate the performance of the method are also presented.


Sign in / Sign up

Export Citation Format

Share Document