Mechanical buckling analysis of functionally graded composite laminated plates reinforced with temperature dependent graphene sheets resting on elastic foundation

Author(s):  
Fatemeh Abbaspour ◽  
Hadi Arvin ◽  
Yaser Kiani
2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mohammad Hossein Sharifan ◽  
Mohsen Jabbari

Abstract In this paper, mechanical buckling analysis of a functionally graded (FG) elliptical plate, which is made up of saturated porous materials and is resting on two parameters elastic foundation, is investigated. The plate is subjected to in-plane force and mechanical properties of the plate assumed to be varied through the thickness of it according to three different functions, which are called porosity distributions. Since it is assumed that the plate to be thick, the higher order shear deformation theory (HSDT) is employed to analyze the plate. Using the total potential energy function and using the Ritz method, the critical buckling load of the plate is obtained and the results are verified with the simpler states in the literature. The effect of different parameters, such as different models of porosity distribution, porosity variations, pores compressibility variations, boundary conditions, and aspect ratio of the plate, is considered and has been discussed in details. It is seen that increasing the porosity coefficient decreases the stiffness of the plate and consequently the critical buckling load will be reduced. Also, by increasing the pores' compressibility, the critical buckling load will be increased. Adding the elastic foundation to the structure will increase the critical buckling load. The results of this study can be used to design more efficient structures in the future.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2018 ◽  
Vol 10 (02) ◽  
pp. 1850014 ◽  
Author(s):  
Sanjay Singh Tomar ◽  
Mohammad Talha

The aim of the present study is to investigate thermo-mechanical buckling response of skew functionally graded laminated plates (FGLP) with initial geometric imperfections. The formulation has been performed using Reddy’s higher order shear deformation theory (HSDT) with the [Formula: see text] continuous displacement field. A nine-noded isoparametric element has been employed to discretize the domain of the plate. Variational principle has been used to derive the governing differential equation of the problem. Several examples with various comparison and parametric studies have been shown to prove the efficiency and effectiveness of the present formulation. The numerical results have been highlighted with different system parameters and boundary conditions.


Author(s):  
A Naderi ◽  
A R Saidi

In this study, an analytical solution for the buckling of a functionally graded annular sector plate resting on an elastic foundation is presented. The buckling analysis of the functionally graded annular sector plate is investigated for two typical, Winkler and Pasternak, elastic foundations. The equilibrium and stability equations are derived according to the Kirchhoff's plate theory using the energy method. In order to decouple the highly coupled stability equations, two new functions are introduced. The decoupled equations are solved analytically for a plate having simply supported boundary conditions on two radial edges. Satisfying the boundary conditions on the circular edges of the plate yields an eigenvalue problem for finding the critical buckling load. Extensive results pertaining to critical buckling load are presented and the effects of boundary conditions, volume fraction, annularity, plate thickness, and elastic foundation are studied.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850049 ◽  
Author(s):  
Smita Parida ◽  
Sukesh Chandra Mohanty

This paper deals with the free vibration and buckling analysis of functionally graded material (FGM) plates, resting on the Winkler–Pasternak elastic foundation. The higher order shear deformation plate theory (HSPT) is adopted for the realistic variation of transverse displacement through the thickness, using the power law distribution to describe the variation of the material properties. Both the effects of shear deformation and rotary inertia are considered. In the present model, the plate is discretised into [Formula: see text] eight noded serendipity quadratic elements with seven nodal degrees of freedom (DOFs). The validation study is carried out by comparing the calculated values with those given in the literature. The effects of various parameters like the Winkler and Pasternak modulus coefficients, volume fraction index, aspect ratio, thickness ratio and different boundary conditions on the behaviour of the FGM plates are studied.


Sign in / Sign up

Export Citation Format

Share Document