Characterization of Interaction of C- and N-Terminal Domains in LIM15/DMC1 and RAD51 from a Basidiomycetes, Coprinus cinereus

2000 ◽  
Vol 275 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Takayuki Nara ◽  
Taichi Yamamoto ◽  
Kengo Sakaguchi
2021 ◽  
Vol 9 (6) ◽  
pp. 63
Author(s):  
Payam Farzad ◽  
Ted Lundgren ◽  
Adel Al-Asfour ◽  
Lars Andersson ◽  
Christer Dahlin

This study was undertaken to investigate the integration of titanium micro-implants installed in conjunction with previously dentin-grafted areas and to study the morphological appearance, mineral content, and healing pattern of xenogenic EDTA-conditioned dentin blocks and granules grafted to cavities in the tibial bone of rabbits. Demineralized and non-demineralized dentin blocks and granules from human premolars were implanted into cavities prepared on the lateral aspects of the tibias of rabbits. After a healing period of six months, micro-implants were installed at each surgical site. Histological examinations were carried out after 24 weeks. Characterization of the EDTA-conditioned dentin blocks was performed by means of light microscopy, dental X-rays, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). No implants were found to be integrated in direct contact with the dentin particles or blocks. On the EDTA-conditioned dentin surface, the organic marker elements C and N dominated, as revealed by EDX. The hydroxyapatite constituents Ca and P were almost absent on the dentin surface. No statistically significant difference was observed between the EDTA-conditioned and non-demineralized dentin, as revealed by BIC and BA. The bone-inductive capacity of the dentin material seemed limited, although demineralization by means of EDTA indicated higher BIC and BA values in conjunction with the installed implants in the area. A 12 h EDTA treatment did not fully decalcify the grafts, as revealed by X-ray analysis.


1989 ◽  
Vol 92 (3) ◽  
pp. 519-528 ◽  
Author(s):  
P. Draber ◽  
E. Draberova ◽  
I. Linhartova ◽  
V. Viklicky

A panel of 11 monoclonal antibodies specific to alpha- or beta-tubulin subunits was used to study the location of tubulin molecules in cytoplasmic microtubules. Specificity of antibodies was confirmed by immunoblotting and immunofluorescence experiments on fixed cells. The limited proteolysis of tubulin with trypsin and chymotrypsin followed by immunoblotting demonstrated that the antibodies discriminated between structural domains of both subunits. Epitope mapping of isolated alpha-tubulin revealed that a set of antibodies against the N-terminal domain of the alpha-subunit (TU-01, TU-02, TU-03, TU-09, 6–11B-1) recognized at least four different antigenic determinants. Immunofluorescence staining of unfixed detergent-extracted cells showed that antibodies to determinants on C-terminal domains labelled microtubules, but these were not decorated with antibodies to N-terminal domains. The same results were obtained after microinjection of antibodies into living cells. The unchanged distribution of microtubules in injected cells was confirmed by double-label immunofluorescence with polyclonal antibodies. The data indicate that while parts of C-terminal domains of both subunits are exposed on the exterior of the microtubules, considerable regions of the N-terminal domains are either not exposed on the surface of cytoplasmic microtubules, or are masked by interacting proteins.


1997 ◽  
Vol 31 (2) ◽  
pp. 144-157 ◽  
Author(s):  
Natalie Yeager Stassen ◽  
J. M. Logsdon Jr. ◽  
G. J. Vora ◽  
Hildo H. Offenberg ◽  
Jeffrey D. Palmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document