scholarly journals An Anti-CD2 Monoclonal Antibody That Both Inhibits and Stimulates T Cell Activation Recognizes a Subregion of CD2 Distinct from Known Ligand-Binding Sites

1993 ◽  
Vol 150 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Karen F. Kozarsky ◽  
Carlene Tsai ◽  
Cynthia M. Bott ◽  
Gopal Allada ◽  
Lan Lan Li ◽  
...  
Nature ◽  
1987 ◽  
Vol 329 (6142) ◽  
pp. 842-846 ◽  
Author(s):  
Andrew Peterson ◽  
Brian Seed

1982 ◽  
Vol 399 (1 Immunoglobuli) ◽  
pp. 227-237
Author(s):  
Denis R. Burger ◽  
David Regan ◽  
Karen Williams ◽  
Gerrie Leslie

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 834
Author(s):  
Frederike A. Hartl ◽  
Jatuporn Ngoenkam ◽  
Esmeralda Beck-Garcia ◽  
Liz Cerqueira ◽  
Piyamaporn Wipa ◽  
...  

The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive immune responses. It is composed of the ligand-binding clonotypic TCRαβ heterodimer and the non-covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck. Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70 recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.


2013 ◽  
Vol 191 (8) ◽  
pp. 4174-4183 ◽  
Author(s):  
Li-Zhen He ◽  
Naseem Prostak ◽  
Lawrence J. Thomas ◽  
Laura Vitale ◽  
Jeffrey Weidlick ◽  
...  

1995 ◽  
Vol 182 (1) ◽  
pp. 5-13 ◽  
Author(s):  
P Stumbles ◽  
D Mason

In vitro experiments using purified rat CD4+ T cells in primary and secondary mixed leukocyte cultures (MLC) have been carried out to explore the mechanism of inhibition of cell-mediated autoimmune disease in the rat by a nondepleting monoclonal antibody (mAb) to CD4. Previous work has shown that W3/25, a mouse anti-rat CD4 mAb of immunoglobulin G1 isotype, completely prevents the development of the paralysis associated with experimental allergic encephalomyelitis (EAE) in Lewis rats, but does so without eliminating the encephalitogenic T cells. The in vitro experiments described in this study have shown that when CD4+ T cells were activated in the presence of the anti-CD4 mAb in a primary MLC, the synthesis of interferon (IFN) gamma, but not interleukin (IL) 2, was completely inhibited. After secondary stimulation, now in the absence of the mAb, the synthesis of IL-4 and IL-13 mRNA was greatly enhanced compared with that observed from CD4+ T cells derived from primary cultures in which the mAb was omitted. As IL-4 and IL-13 are known to antagonize cell-mediated immune reactions, and as EAE is cell-mediated disease, the data suggest that the W3/25 mAb controls EAE by modifying the cytokine repertoire of T cells that respond to the encephalitogen. The capacity for the mAb to suppress IFN-gamma synthesis provides, in part, an explanation for this change in cytokine production. These findings are discussed in terms of what is known of the factors that determine which cytokine genes are expressed on T cell activation. Possible implications for the evolution of T cell responses in human immunodeficiency virus infection are also discussed.


2001 ◽  
Vol 194 (10) ◽  
pp. 1485-1495 ◽  
Author(s):  
Alexandre Arcaro ◽  
Claude Grégoire ◽  
Talitha R. Bakker ◽  
Lucia Baldi ◽  
Martin Jordan ◽  
...  

The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8β chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8αβ, but not CD8αα or soluble CD8αβ, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8β endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8β constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2Kd, and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8β, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56lck. In addition, the cytoplasmic portion of CD8β mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8αβ partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56lck in rafts, which in turn phosphorylates CD3 and initiates T cell activation.


1991 ◽  
Vol 132 (2) ◽  
pp. 366-376 ◽  
Author(s):  
Susan Levine ◽  
Chen Yu Xian ◽  
Bede Agocha ◽  
Janet Allopenna ◽  
Karl Welte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document