Effects of a Unique Adhesion-promoting Anti-rat CD45 Monoclonal Antibody on T-cell Activation

Author(s):  
Milos D. Pavlović ◽  
Miodrag Čolić
1982 ◽  
Vol 399 (1 Immunoglobuli) ◽  
pp. 227-237
Author(s):  
Denis R. Burger ◽  
David Regan ◽  
Karen Williams ◽  
Gerrie Leslie

2013 ◽  
Vol 191 (8) ◽  
pp. 4174-4183 ◽  
Author(s):  
Li-Zhen He ◽  
Naseem Prostak ◽  
Lawrence J. Thomas ◽  
Laura Vitale ◽  
Jeffrey Weidlick ◽  
...  

1995 ◽  
Vol 182 (1) ◽  
pp. 5-13 ◽  
Author(s):  
P Stumbles ◽  
D Mason

In vitro experiments using purified rat CD4+ T cells in primary and secondary mixed leukocyte cultures (MLC) have been carried out to explore the mechanism of inhibition of cell-mediated autoimmune disease in the rat by a nondepleting monoclonal antibody (mAb) to CD4. Previous work has shown that W3/25, a mouse anti-rat CD4 mAb of immunoglobulin G1 isotype, completely prevents the development of the paralysis associated with experimental allergic encephalomyelitis (EAE) in Lewis rats, but does so without eliminating the encephalitogenic T cells. The in vitro experiments described in this study have shown that when CD4+ T cells were activated in the presence of the anti-CD4 mAb in a primary MLC, the synthesis of interferon (IFN) gamma, but not interleukin (IL) 2, was completely inhibited. After secondary stimulation, now in the absence of the mAb, the synthesis of IL-4 and IL-13 mRNA was greatly enhanced compared with that observed from CD4+ T cells derived from primary cultures in which the mAb was omitted. As IL-4 and IL-13 are known to antagonize cell-mediated immune reactions, and as EAE is cell-mediated disease, the data suggest that the W3/25 mAb controls EAE by modifying the cytokine repertoire of T cells that respond to the encephalitogen. The capacity for the mAb to suppress IFN-gamma synthesis provides, in part, an explanation for this change in cytokine production. These findings are discussed in terms of what is known of the factors that determine which cytokine genes are expressed on T cell activation. Possible implications for the evolution of T cell responses in human immunodeficiency virus infection are also discussed.


1993 ◽  
Vol 150 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Karen F. Kozarsky ◽  
Carlene Tsai ◽  
Cynthia M. Bott ◽  
Gopal Allada ◽  
Lan Lan Li ◽  
...  

1991 ◽  
Vol 132 (2) ◽  
pp. 366-376 ◽  
Author(s):  
Susan Levine ◽  
Chen Yu Xian ◽  
Bede Agocha ◽  
Janet Allopenna ◽  
Karl Welte ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A587-A587
Author(s):  
Diego Alvarado ◽  
Laura Vitale ◽  
Mike Murphy ◽  
Thomas O’Neill ◽  
Edward Natoli ◽  
...  

BackgroundAxl is a member of the TAM (Tyro3/Axl/MerTK) family of receptor tyrosine kinases and a negative regulator of innate immunity. Activation of Axl through its ligand Gas6 leads to suppression of myeloid cell activity, while its activation in tumor cells drives tumor growth, metastasis, and is associated with acquired resistance to targeted therapies, radiotherapy and chemotherapy.MethodsPurified monoclonal antibodies and variants thereof were tested in human cancer lines and primary human myeloid cells for effects on Axl signaling and immune activation, respectively.ResultsWe describe a humanized IgG1 Axl-targeting monoclonal antibody (mAb), CDX-0168, that binds to the ligand-binding domain of Axl with sub-nanomolar affinity and potently inhibits Gas6 binding. In tumor cells, CDX-0168 inhibits Gas6-dependent Axl phosphorylation and signaling and elicits tumor cell killing via ADCC in vitro and in vivo. In primary human immune cells, CDX-0168 treatment induces potent release of pro-inflammatory cytokines and chemokines from dendritic cells, monocytes and macrophages through an Fc receptor-dependent mechanism and enhanced T cell activation in mixed lymphocyte reactions. Axl inhibition may further enhance antitumor activity associated with PD-(L)1 blockade. To this end, we generated a tetravalent bispecific Axl x PD-L1 antibody combining CDX-0168 with a potent anti-PD-L1 mAb (9H9) using an IgG-scFv format. The bispecific antibody elicits greater cytokine release and T cell activation in vitro than the combination of the parental antibodies, while maintaining robust Axl and PD-L1 blockade.ConclusionsAdditional studies investigating simultaneous blockade of the Axl and PD-L1 pathways with other agents may further exploit the potential for this novel anti-cancer therapeutic approach.


2019 ◽  
Vol 27 (S2) ◽  
Author(s):  
R.R. Kansara ◽  
C. Speziali

The management of hematologic malignancies has traditionally relied on chemotherapy regimens, many of which are still in use today. However, with advancements in the knowledge of tumour pathophysiology, therapies are continually evolving. Monoclonal antibodies against specific targets on tumour cells are now widely used to treat hematologic malignancies, either in combination with chemotherapy or as single agents. Rituximab, a monoclonal antibody against the CD20 antigen, is a good example of successful monoclonal antibody therapy that has improved outcomes for patients with B cell non-Hodgkin lymphomas. Monoclonal antibodies are now being used against the immune checkpoints that function to inhibit T cell activation and subsequent tumour eradication by those cytotoxic T cells. Such therapies enhance T cell–mediated tumour eradication and are widely successful in treating patients with solid tumours such as malignant melanoma. Now, they are slowly finding their place in the management of hematologic neoplasms. Even though, currently, immune checkpoint inhibitors are used for relapsed or refractory hematologic neoplasms, trials are ongoing to evaluate their role in frontline treatment. Our review focuses on the current use of immunotherapies in various hematologic malignancies.


Sign in / Sign up

Export Citation Format

Share Document