A Specific Inhibitor of the p38 Mitogen Activated Protein Kinase Affects Differentially the Production of Various Cytokines by Activated Human T Cells: Dependence on CD28 Signaling and Preferential Inhibition of IL-10 Production

1999 ◽  
Vol 192 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Samuel Koprak ◽  
Mary Jo Staruch ◽  
Francis J. Dumont
1995 ◽  
Vol 270 (46) ◽  
pp. 27489-27494 ◽  
Author(s):  
Dario R. Alessi ◽  
Ana Cuenda ◽  
Philip Cohen ◽  
David T. Dudley ◽  
Alan R. Saltiel

1998 ◽  
Vol 187 (9) ◽  
pp. 1417-1426 ◽  
Author(s):  
Julie A. Frearson ◽  
Denis R. Alexander

Src homology 2 (SH2) domain–containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase–mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-ζ chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2–associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3′-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3′-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process.


2010 ◽  
Vol 78 (5) ◽  
pp. 1859-1863 ◽  
Author(s):  
Masood A. Khan ◽  
Richard M. Gallo ◽  
Randy R. Brutkiewicz

ABSTRACT Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis and an important means by which this bacterium evades the host's immune system. In this study, we demonstrate that CD1d-expressing cells treated with LT have reduced CD1d-mediated antigen presentation. We earlier showed an important role for the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulation of CD1d-mediated antigen presentation, and we report here that LT impairs antigen presentation by CD1d in an ERK1/2-dependent manner. Similarly, LT and the ERK1/2 pathway-specific inhibitor U0126 caused a decrease in major histocompatibility complex (MHC) class II-mediated antigen presentation. Confocal microscopy analyses revealed altered intracellular distribution of CD1d and LAMP-1 in LT-treated cells, similar to the case for ERK1/2-inhibited cells. These results suggest that Bacillus anthracis has the ability to evade the host's innate immune system by reducing CD1d-mediated antigen presentation through targeting the ERK1/2 pathway.


2000 ◽  
Vol 191 (6) ◽  
pp. 1017-1030 ◽  
Author(s):  
Jian Zhang ◽  
Jian-Xin Gao ◽  
Kostantin Salojin ◽  
Qing Shao ◽  
Marsha Grattan ◽  
...  

Activation-induced cell death (AICD) is a mechanism of peripheral T cell tolerance that depends upon an interaction between Fas and Fas ligand (FasL). Although c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) may be involved in apoptosis in various cell types, the mode of regulation of FasL expression during AICD in T cells by these two MAPKs is incompletely understood. To investigate the regulatory roles of these two MAPKs, we analyzed the kinetics of TCR-induced p38 MAPK and JNK activity and their regulation of FasL expression and AICD. We report that both JNK and p38 MAPK regulate AICD in T cells. Our data suggest a novel model of T cell AICD in which p38 MAPK acts early to initiate FasL expression and the Fas-mediated activation of caspases. Subsequently, caspases stimulate JNK to further upregulate FasL expression. Thus, p38 MAPK and downstream JNK converge to regulate FasL expression at different times after T cell receptor stimulation to elicit maximum AICD.


Sign in / Sign up

Export Citation Format

Share Document