scholarly journals Dystroglycan Overexpression in Vivo Alters Acetylcholine Receptor Aggregation at the Neuromuscular Junction

2000 ◽  
Vol 227 (2) ◽  
pp. 595-605 ◽  
Author(s):  
R.David Heathcote ◽  
Jonathan M Ekman ◽  
Kevin P Campbell ◽  
Earl W Godfrey
2021 ◽  
Vol 12 ◽  
Author(s):  
Tatjana Straka ◽  
Charlotte Schröder ◽  
Andreas Roos ◽  
Laxmikanth Kollipara ◽  
Albert Sickmann ◽  
...  

Recent studies have demonstrated that neuromuscular junctions are co-innervated by sympathetic neurons. This co-innervation has been shown to be crucial for neuromuscular junction morphology and functional maintenance. To improve our understanding of how sympathetic innervation affects nerve–muscle synapse homeostasis, we here used in vivo imaging, proteomic, biochemical, and microscopic approaches to compare normal and sympathectomized mouse hindlimb muscles. Live confocal microscopy revealed reduced fiber diameters, enhanced acetylcholine receptor turnover, and increased amounts of endo/lysosomal acetylcholine-receptor-bearing vesicles. Proteomics analysis of sympathectomized skeletal muscles showed that besides massive changes in mitochondrial, sarcomeric, and ribosomal proteins, the relative abundance of vesicular trafficking markers was affected by sympathectomy. Immunofluorescence and Western blot approaches corroborated these findings and, in addition, suggested local upregulation and enrichment of endo/lysosomal progression and autophagy markers, Rab 7 and p62, at the sarcomeric regions of muscle fibers and neuromuscular junctions. In summary, these data give novel insights into the relevance of sympathetic innervation for the homeostasis of muscle and neuromuscular junctions. They are consistent with an upregulation of endocytic and autophagic trafficking at the whole muscle level and at the neuromuscular junction.


2006 ◽  
Vol 20 (13) ◽  
pp. 1800-1816 ◽  
Author(s):  
Tatiana Cheusova ◽  
Muhammad Amir Khan ◽  
Steffen Wolfgang Schubert ◽  
Anne-Claude Gavin ◽  
Thierry Buchou ◽  
...  

1991 ◽  
Vol 331 (1261) ◽  
pp. 273-280 ◽  

Agrin, a protein isolated from the synapse-rich electric organ of Torpedo californica , induces the formation of specializations on myotubes in culture which resemble the post-synaptic apparatus at the vertebrate skeletal neuromuscular junction. For example, the specializations contain aggregates of acetylcholine receptors and acetylcholinesterase. This report summarizes the evidence that the formation of the postsynaptic apparatus at developing and regenerating neuromuscular junctions is triggered by the release of agrin from motor axon terminals and describes results of recent experiments which suggest that agrininduced tyrosine phosphorylation of the β subunit of the acetylcholine receptor may play a role in receptor aggregation.


2010 ◽  
Vol 30 (19) ◽  
pp. 6620-6634 ◽  
Author(s):  
L. Simeone ◽  
M. Straubinger ◽  
M. A. Khan ◽  
N. Nalleweg ◽  
T. Cheusova ◽  
...  

1994 ◽  
Vol 107 (6) ◽  
pp. 1485-1497
Author(s):  
L.P. Baker ◽  
D.F. Daggett ◽  
H.B. Peng

Focal adhesion kinase is a recently characterized tyrosine kinase that is concentrated at focal contacts in cultured cells. It is thought to play an important role in the regulation of the integrin-based signal transduction mechanism involved in the assembly of this membrane specialization. In this study, we examined the immunocytochemical distribution of focal adhesion kinase in Xenopus skeletal muscle and its role in the formation of two sarcolemmal specializations, the myotendinous junction and the neuromuscular junction, using a monoclonal antibody (2A7) against this protein. Immunoprecipitation of Xenopus embryonic tissues with this antibody demonstrated a single band at a relative molecular mass of 116 kDa. A distinct concentration of immunolabeling for focal adhesion kinase was observed at the myotendinous junction of muscle fibers in vivo. At this site, the labeling for this protein is correlated with an accumulation of phosphotyrosine immunolabeling. Focal adhesion kinase was not concentrated at the neuromuscular junction in muscle cells either in vivo or in vitro. However, it was localized at spontaneously formed acetylcholine receptor clusters in cultured Xenopus myotomal muscle cells, although its distribution was not exactly congruent with that of the receptors. In these cells, the accumulation focal adhesion kinase was induced by polystyrene microbeads. In addition, beads also induce the formation of acetylcholine receptor clusters and myotendinous junction-like specializations. By following the appearance of the focal adhesion kinase relative to the formation of these sarcolemmal specializations at bead-muscle contacts in cultured muscle cells, we conclude that the accumulation of this protein was in pace with the development of the myotendinous junction, but occurred well after the clustering of acetylcholine receptors. These results suggest that focal adhesion kinase may be involved in the development and/or maintenance of the myotendinous junction through an integrin-based signaling system. Although it can accumulate at acetylcholine receptor clusters formed in culture, it does not appear to be involved in the development of the neuromuscular junction.


Science ◽  
1999 ◽  
Vol 286 (5439) ◽  
pp. 503-507 ◽  
Author(s):  
Mohammed Akaaboune ◽  
Susan M. Culican ◽  
Stephen G. Turney ◽  
Jeff W. Lichtman

Quantitative fluorescence imaging was used to study the regulation of acetylcholine receptor (AChR) number and density at neuromuscular junctions in living adult mice. At fully functional synapses, AChRs have a half-life of about 14 days. However, 2 hours after neurotransmission was blocked, the half-life of the AChRs was now less than a day; the rate was 25 times faster than before. Most of the lost receptors were not quickly replaced. Direct muscle stimulation or restoration of synaptic transmission inhibited this process. AChRs that were removed from nonfunctional synapses resided for hours in the perijunctional membrane before being locally internalized. Dispersed AChRs could also reaggregate at the junction once neurotransmission was restored. The rapid and reversible alterations in AChR density at the neuromuscular junction in vivo parallel changes thought to occur in the central nervous system at synapses undergoing potentiation and depression.


Sign in / Sign up

Export Citation Format

Share Document