Control of Mammary Epithelial Cell DNA Synthesis by Epidermal Growth Factor, Cholera Toxin, and IGF-1: Specific Inhibitory Effect of Prolactin on EGF-Stimulated Cell Growth

1994 ◽  
Vol 210 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Suzanne E. Fenton ◽  
Lewis G. Sheffield
2009 ◽  
Vol 29 (10) ◽  
pp. 2505-2520 ◽  
Author(s):  
Eric Haines ◽  
Parham Minoo ◽  
Zhenqian Feng ◽  
Nazila Resalatpanah ◽  
Xin-Min Nie ◽  
...  

ABSTRACT Characterizing mechanisms regulating mammary cell growth and differentiation is vital, as they may contribute to breast carcinogenesis. Here, we examine a cross talk mechanism(s) downstream of prolactin (PRL), a primary differentiation hormone, and epidermal growth factor (EGF), an important proliferative factor, in mammary epithelial cell growth and differentiation. Our data indicate that EGF exerts inhibitory effects on PRL-induced cellular differentiation by interfering with Stat5a-mediated gene expression independent of the PRL-proximal signaling cascade. Additionally, our data show that PRL is a potent inhibitor of EGF-induced cell proliferation. We identify tyrosine phosphorylation of the growth factor receptor-bound protein 2 (Grb2) as a critical mechanism by which PRL antagonizes EGF-induced cell proliferation by attenuating the activation of the Ras/mitogen-activated protein kinase (MAPK) pathway. Together, our results define a novel negative cross-regulation between PRL and EGF involving the Jak2/Stat5a and Ras/MAPK pathways through tyrosine phosphorylation of Grb2.


1988 ◽  
Vol 8 (2) ◽  
pp. 557-563
Author(s):  
P P Di Fiore ◽  
J Falco ◽  
I Borrello ◽  
B Weissman ◽  
S A Aaronson

BALB/MK mouse epidermal keratinocytes require epidermal growth factor (EGF) for proliferation and terminally differentiate in response to high calcium concentrations. We show that EGF is an extremely potent mitogen, causing BALB/MK cultures to enter the cell cycle in a synchronous manner associated with a greater than 100-fold increase in DNA synthesis. Analysis of the expression of proto-oncogenes which have been reported to be activated during the cascade of events following growth factor stimulation of fibroblasts or lymphoid cells revealed a very rapid but transient 100-fold increase in c-fos RNA but little or no effect on the other proto-oncogenes analyzed. Exposure of EGF-synchronized BALB/MK cells to high levels of calcium was associated with a striking decrease in the early burst of c-fos RNA as well as the subsequent peak of cell DNA synthesis. Since the inhibitory effect of high calcium on c-fos RNA expression was measurable within 30 min, our studies imply that the EGF proliferative and calcium differentiation signals must interact very early in the pathway of EGF-induced proliferation. Our results also establish that c-fos RNA modulation is an important early marker of cell proliferation in epithelial as well as mesenchymal cells.


1982 ◽  
Vol 93 (1) ◽  
pp. 1-4 ◽  
Author(s):  
D W Barnes

A medium consisting of a rich basal nutrient mixture supplemented with bovine insulin (10 micrograms/ml), human transferrin (10 micrograms/ml), human cold-insoluble globulin (5 micrograms/ml), and ethanolamine (0.5 mM) supported the growth of the A431 human epidermoid cell line in the absence of serum with a generation time equal to that of cells in serum-containing medium. Addition of epidermal growth factor (EGF) to this culture medium at concentration mitogenic for other cell types resulted in a marked inhibition of A431 cell growth. Inhibitory effects of EGF were observed at 1 ng/ml and near-maximal effects were observed at 10 ng/ml. The inhibitory effect of EGF could be reversed by the omission of EGF in subsequent medium changes and could be prevented by the addition of anti-EGF antibody to the culture medium. Inhibition of A431 cell growth by EGF also could be demonstrated in serum-containing medium.


1988 ◽  
Vol 8 (2) ◽  
pp. 557-563 ◽  
Author(s):  
P P Di Fiore ◽  
J Falco ◽  
I Borrello ◽  
B Weissman ◽  
S A Aaronson

BALB/MK mouse epidermal keratinocytes require epidermal growth factor (EGF) for proliferation and terminally differentiate in response to high calcium concentrations. We show that EGF is an extremely potent mitogen, causing BALB/MK cultures to enter the cell cycle in a synchronous manner associated with a greater than 100-fold increase in DNA synthesis. Analysis of the expression of proto-oncogenes which have been reported to be activated during the cascade of events following growth factor stimulation of fibroblasts or lymphoid cells revealed a very rapid but transient 100-fold increase in c-fos RNA but little or no effect on the other proto-oncogenes analyzed. Exposure of EGF-synchronized BALB/MK cells to high levels of calcium was associated with a striking decrease in the early burst of c-fos RNA as well as the subsequent peak of cell DNA synthesis. Since the inhibitory effect of high calcium on c-fos RNA expression was measurable within 30 min, our studies imply that the EGF proliferative and calcium differentiation signals must interact very early in the pathway of EGF-induced proliferation. Our results also establish that c-fos RNA modulation is an important early marker of cell proliferation in epithelial as well as mesenchymal cells.


Sign in / Sign up

Export Citation Format

Share Document