Stress-Induced Activation of c-Jun N-Terminal Kinase in Sensory Ganglion Neurons: Accumulation in Nuclear Domains Enriched in Splicing Factors and Distribution in Perichromatin Fibrils

2000 ◽  
Vol 256 (1) ◽  
pp. 179-191 ◽  
Author(s):  
Emma Pena ◽  
Maria T. Berciano ◽  
Rosario Fernandez ◽  
Piero Crespo ◽  
Miguel Lafarga
Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.


1997 ◽  
Vol 136 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lei Du ◽  
Stephen L. Warren

In the preceding study we found that Sm snRNPs and SerArg (SR) family proteins co-immunoprecipitate with Pol II molecules containing a hyperphosphorylated CTD (Kim et al., 1997). The association between Pol IIo and splicing factors is maintained in the absence of pre-mRNA, and the polymerase need not be transcriptionally engaged (Kim et al., 1997). The latter findings led us to hypothesize that a phosphorylated form of the CTD interacts with pre-mRNA splicing components in vivo. To test this idea, a nested set of CTD-derived proteins was assayed for the ability to alter the nuclear distribution of splicing factors, and to interfere with splicing in vivo. Proteins containing heptapeptides 1-52 (CTD52), 1-32 (CTD32), 1-26 (CTD26), 1-13 (CTD13), 1-6 (CTD6), 1-3 (CTD3), or 1 (CTD1) were expressed in mammalian cells. The CTD-derived proteins become phosphorylated in vivo, and accumulate in the nucleus even though they lack a conventional nuclear localization signal. CTD52 induces a selective reorganization of splicing factors from discrete nuclear domains to the diffuse nucleoplasm, and significantly, it blocks the accumulation of spliced, but not unspliced, human β-globin transcripts. The extent of splicing factor disruption, and the degree of inhibition of splicing, are proportional to the number of heptapeptides added to the protein. The above results indicate a functional interaction between Pol II's CTD and pre-mRNA splicing.


Author(s):  
S. Huang ◽  
T. J. Deerinck ◽  
M. H. Ellisman ◽  
D. L. Spector

Previous studies from our laboratory as well as other laboratories have shown that a variety of pre-mRNA splicing factors are localized to a subnuclear speckled domain when mammalian cells are immunolabeled with antibodies against these pre-mRNA splicing factors. At the electron microscopic level the speckled pattern is composed of both interchromatin granule clusters and perichromatin fibrils. A large body of evidence has accumulated from both our laboratory and other laboratories which has suggested that the perichromatin fibrils represent nascent transcripts and the interchromatin granule clusters represent storage and/or assembly sites for pre-mRNA splicing factors. The majority of substrates for these splicing factors are pre-mRNAs which contain a poly(A) tail of approximately 200-300 nucleotides. During the past year we have studied the distribution of poly(A)+ RNA in the mammalian cell nucleus and its transport through nuclear pores by fluorescence and electron microscopic in situ hybridization. Poly(A)+ RNA was detected in the nucleus as a speckled pattern which we have found to totally colocalize with pre-mRNA splicing factors at interchromatin granule clusters and perichromatin fibrils.


2000 ◽  
Vol 11 (0) ◽  
pp. 39 ◽  
Author(s):  
Seiji Matsuda ◽  
Naoto Kobayashi ◽  
Hiroyuki Wakisaka ◽  
Shouichiro Saito ◽  
Kyouko Saito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document