cgmp signalling
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yujing Zhang ◽  
Pascal Benz ◽  
Daniel Stehle ◽  
Shang Yang ◽  
Hendrikje Kurz ◽  
...  

Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatiotemporal regulation in megakaryocytes (MKs) is lacking. We expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide (NO) triggered cGMP generation in BM MKs. In summary, we established for the first time optogenetics in primary MKs and identified PDE5 as the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.


Author(s):  
Robert M. H. Grange ◽  
Michael E. J. Preedy ◽  
Aniruthan Renukanthan ◽  
Joshua P. Dignam ◽  
Vanessa J. Lowe ◽  
...  

Author(s):  
Soumyaparna Das ◽  
Yiyi Chen ◽  
Jie Yan ◽  
Gustav Christensen ◽  
Soumaya Belhadj ◽  
...  

AbstractThe second messengers, cGMP and Ca2+, have both been implicated in retinal degeneration; however, it is still unclear which of the two is most relevant for photoreceptor cell death. This problem is exacerbated by the close connections and crosstalk between cGMP-signalling and calcium (Ca2+)-signalling in photoreceptors. In this review, we summarize key aspects of cGMP-signalling and Ca2+-signalling relevant for hereditary photoreceptor degeneration. The topics covered include cGMP-signalling targets, the role of Ca2+ permeable channels, relation to energy metabolism, calpain-type proteases, and how the related metabolic processes may trigger and execute photoreceptor cell death. A focus is then put on cGMP-dependent mechanisms and how exceedingly high photoreceptor cGMP levels set in motion cascades of Ca2+-dependent and independent processes that eventually bring about photoreceptor cell death. Finally, an outlook is given into mutation-independent therapeutic approaches that exploit specific features of cGMP-signalling. Such approaches might be combined with suitable drug delivery systems for translation into clinical applications.


Author(s):  
Philine Marchetta ◽  
Lukas Rüttiger ◽  
Adrian J. Hobbs ◽  
Wibke Singer ◽  
Marlies Knipper

2020 ◽  
Author(s):  
Nicholas J. Katris ◽  
Yoshiki Yamaryo-Botte ◽  
Jan Janouškovec ◽  
Serena Shunmugam ◽  
Christophe-Sebastien Arnold ◽  
...  

ABSTRACTHost cell invasion and subsequent egress by Toxoplasma parasites is regulated by a network of cGMP, cAMP, and calcium signalling proteins. Such eukaryotic signalling networks typically involve lipid second messengers including phosphatidylinositol phosphates (PIPs), diacylglycerol (DAG) and phosphatidic acid (PA). However, the lipid signalling network in Toxoplasma is poorly defined. Here we present lipidomic analysis of a mutant of central flippase/guanylate cyclase TgGC in Toxoplasma, which we show has disrupted turnover of signalling lipids impacting phospholipid metabolism and membrane stability. The turnover of signalling lipids is extremely rapid in extracellular parasites and we track changes in PA and DAG to within 5 seconds, which are variably defective upon disruption of TgGC and other signalling proteins. We then identify the position of each protein in the signal chain relative to the central cGMP signalling protein TgGC and map the lipid signal network coordinating conoid extrusion and microneme secretion for egress and invasion.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hao Wang ◽  
Wen-Jian Liu ◽  
Meng-Jie Hu ◽  
Meng-Ting Zhang ◽  
Guo-Ming Shen

Acupuncture strongly alleviates gastrointestinal symptoms and especially promotes gastrointestinal motility. However, the mechanism underlying these processes is poorly understood. This study was designed to examine the effect of electroacupuncture (EA) at gastric back-shu (BL21) and front-mu (RN12) acupoints on gastric motility in functional dyspepsia (FD) rats and to investigate the mechanisms of its effects on the glutamatergic system in the hippocampus. We found that EA at RN12 or BL21 enhanced gastric motility in FD rats, whereas EA at the combination of RN12 and BL21 showed an additional effect. Microdialysis combined with HPLC showed that EA reduced the glutamate content in the hippocampus, and the NMDAR-NO-cGMP signalling pathway was downregulated, as determined by Western blot assays, in FD rats. In addition, we found that decreased gastric motility was significantly restored by the hippocampal infusion of an NMDAR, nNOS, or sGC antagonist. Interestingly, EA had no further effects on gastric motility in the presence of these antagonists in FD rats. Taken together, these results suggest that the hippocampal glutamatergic system is involved in the regulation of gastric motility by EA at RN12 and BL21.


2020 ◽  
Vol 38 (3) ◽  
pp. 319-329
Author(s):  
Jyotirmaya Behera ◽  
Shunmugam Nagarajan ◽  
Uttara Saran ◽  
Ravi Kumar ◽  
Gaurav K. Keshri ◽  
...  

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Judy Kim ◽  
Ivraym B. Barsoum ◽  
Harrison Loh ◽  
Jean-François Paré ◽  
D. Robert Siemens ◽  
...  

Abstract A key mechanism mediating cellular adaptive responses to hypoxia involves the activity of hypoxia-inducible factor 1 (HIF-1), a transcription factor composed of HIF-1α, and HIF-1β subunits. The classical mechanism of regulation of HIF-1 activity involves destabilisation of HIF-1α via oxygen-dependent hydroxylation of proline residues and subsequent proteasomal degradation. Studies from our laboratory revealed that nitric oxide (NO)-mediated activation of cyclic guanosine monophosphate (cGMP) signalling inhibits the acquisition of hypoxia-induced malignant phenotypes in tumour cells. The present study aimed to elucidate a mechanism of HIF-1 regulation involving NO/cGMP signalling. Using human DU145 prostate cancer cells, we assessed the effect of the NO mimetic glyceryl trinitrate (GTN) and the cGMP analogue 8-Bromo-cGMP on hypoxic accumulation of HIF-1α. Concentrations of GTN known to primarily activate the NO/cGMP pathway (100 nM–1 µM) inhibited hypoxia-induced HIF-1α protein accumulation in a time-dependent manner. Incubation with 8-Bromo-cGMP (1 nM–10 µM) also attenuated HIF-1α accumulation, while levels of HIF-1α mRNA remained unaltered by exposure to GTN or 8-Bromo-cGMP. Furthermore, treatment of cells with the calpain (Ca2+-activated proteinase) inhibitor calpastatin attenuated the effects of GTN and 8-Bromo-cGMP on HIF-1α accumulation. However, since calpain activity was not affected by incubation of DU145 cells with various concentrations of GTN or 8-Bromo-cGMP (10 nM or 1 µM) under hypoxic or well-oxygenated conditions, it is unlikely that NO/cGMP signalling inhibits HIF-1α accumulation via regulation of calpain activity. These findings provide evidence for a role of NO/cGMP signalling in the regulation of HIF-1α, and hence HIF-1-mediated hypoxic responses, via a mechanism dependent on calpain.


Sign in / Sign up

Export Citation Format

Share Document