The Effects of Feed Restriction on Reproductive Function in Swiss CD-1 Mice

1993 ◽  
Vol 20 (1) ◽  
pp. 15-22 ◽  
Author(s):  
R Chapin
2021 ◽  
Vol 12 ◽  
Author(s):  
Sonia Andrés ◽  
Ole Madsen ◽  
Olimpio Montero ◽  
Alba Martín ◽  
F. Javier Giráldez

Deficient management of replacement animals in the farm during early developmental windows may promote adverse programming effects on reproductive traits and subsequent transmission to the next generation. In this sense, DNA methylation profiles allow researchers to decode epigenetic regulation mechanisms in mammals and identify novel candidate genes correlated with phenotype differences in both dams and offspring. Therefore, improving knowledge in the field of epigenetics and intergenerational effects caused by prenatal and postnatal early nutritional events (e.g., feed restriction) is crucial for refining strategies dedicated to animal breeding. In this study, we determined differences in the global blood methylation patterns, biochemical profile, and metabolome of ewe lambs (F1) born from either early feed restricted dams (F0-RES) or fed ad libitum (F0-ADL). Our data show that functional categories such as those related to cellular processes, phosphorylation, nervous system, immunity response, or reproductive function were enriched significantly in the F1-RES lambs due to differences in the methylation of genes in these categories. These F1-RES lambs did not show differences in feed efficiency during the replacement period but presented higher levels of insulin and triglycerides and reduced concentration of progesterone, whereas the metabolome profile demonstrated variations in the bile acid composition when compared with the F1-ADL lambs. Taken together, all these results suggest that intergenerational effects caused by early feed restriction of dams (F0) may persist in the F1 female lambs with negative consequences on genes involved in cellular processes and reproductive traits.


2020 ◽  
Vol 1 (1) ◽  
pp. 21-33
Author(s):  
Christina M Merkley ◽  
Allison N Renwick ◽  
Sydney L Shuping ◽  
KaLynn Harlow ◽  
Jeffrey R Sommer ◽  
...  

Undernutrition impairs reproductive success through suppression of gonadotropin-releasing hormone (GnRH), and subsequently luteinizing hormone (LH), secretion. Given that kisspeptin and neurokinin B (NKB) neurons in the arcuate nucleus (ARC) of the hypothalamus are thought to play key stimulatory roles in the generation of GnRH/LH pulses, we hypothesized that feed restriction would reduce the ARC mRNA abundance and protein expression of kisspeptin and NKB in young, male sheep. Fourteen wethers (castrated male sheep five months of age) were either fed to maintain (FM; n = 6) pre-study body weight or feed-restricted (FR; n = 8) to lose 20% of pre-study body weight over 13 weeks. Throughout the study, weekly blood samples were collected and assessed for LH concentration using RIA. At Week 13 of the experiment, animals were killed, heads were perfused with 4% paraformaldehyde, and brain tissue containing the hypothalamus was collected, sectioned, and processed for detection of mRNA (RNAscope) and protein (immunohistochemistry) for kisspeptin and NKB. Mean LH was significantly lower and LH inter-pulse interval was significantly higher in FR wethers compared to FM wethers at the end of the experiment (Week 13). RNAscope analysis revealed significantly fewer cells expressing mRNA for kisspeptin and NKB in FR wethers compared to FM controls, and immunohistochemical analysis revealed significantly fewer immunopositive kisspeptin and NKB cells in FR wethers compared to FM wethers. Taken together, this data supports the idea that long-term feed restriction regulates GnRH/LH secretion through central suppression of kisspeptin and NKB in male sheep. Lay summary While undernutrition is known to impair reproduction at the level of the brain, the components responsible for this in the brain remain to be fully understood. Using male sheep we examined the effect of undernutrition on two stimulatory molecules in the brain critical for reproduction: kisspeptin and neurokinin B. Feed restriction for several weeks resulted in decreased luteinizing hormone in the blood indicating reproductive function was suppressed. In addition, undernutrition also reduced both kisspeptin and neurokinin B levels within a region of the brain involved in reproduction, the hypothalamus. Given that they have stimulatory roles in reproduction, we believe that undernutrition acts in the brain to reduce kisspeptin and neurokinin B levels leading to the reduction in luteinizing hormone secretion. In summary, long-term undernutrition inhibits reproductive function in sheep through suppression of kisspeptin and neurokinin B within the brain.


1993 ◽  
Vol 20 (1) ◽  
pp. 23-29 ◽  
Author(s):  
ROBERT E. CHAPIN ◽  
DUSHYANT K. GULATI ◽  
LETA H. BARNES ◽  
JANET L. TEAGUE

1993 ◽  
Vol 20 (1) ◽  
pp. 15-22
Author(s):  
ROBERT E. CHAPIN ◽  
DUSHYANT K. GULATI ◽  
PATRICIA A. FAIL ◽  
ESTHER HOPE ◽  
SUSAN R. RUSSELL ◽  
...  

Author(s):  
Delbert E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
T. Fast ◽  
J. Stevenson ◽  
...  

Space Lab 3 (SL-3) was flown on Shuttle Challenger providing an opportunity to measure the effect of spaceflight on rat testes. Cannon developed the idea that organisms react to unfavorable conditions with highly integrated metabolic activities. Selye summarized the manifestations of physiological response to nonspecific stress and he pointed out that atrophy of the gonads always occurred. Many papers have been published showing the effects of social interaction, crowding, peck order and confinement. Flickinger showed delayed testicular development in subordinate roosters influenced by group numbers, social rank and social status. Christian reported increasing population size in mice resulted in adrenal hypertrophy, inhibition of reproductive maturation and loss of reproductive function in adults. Sex organ weights also declined. Two male dogs were flown on Cosmos 110 for 22 days. Fedorova reported an increase of 30 to 70% atypical spermatozoa consisting of tail curling and/or the absence of a tail.


2017 ◽  
Vol 17 (1) ◽  
pp. 25-32
Author(s):  
Jacinta Lalchhanhimi ◽  
Lalremsanga H.T.

The breeding biology of tree frog, Polypedates teraiensis was studied during the breeding season at Mizoram University Campus. It was found that sound production by male during the breeding season was primarily a reproductive function and advertisement calls attract females to the breeding areas and announce other males that a given territory is occupied. The aim of this study was to provide the detailed information on the breeding behaviour and the advertisement calls of Polypedates teraiensis. The morphometric measurements of the amplecting pairs (males and females) for sexual dimorphism along with clutch sizes were also studied.


2019 ◽  
Author(s):  
Rachid Mosbah ◽  
Aziz Chettoum ◽  
Zohir Djerrou ◽  
Alberto Mantovani

Author(s):  
V.I. Belyaev ◽  
◽  
G.A. Vostroilova ◽  
S.N. Kabitskiy ◽  
T.Yu. Baranova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document