Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow

2001 ◽  
Vol 171 (2) ◽  
pp. 776-804 ◽  
Author(s):  
Gregor C̆erne ◽  
Stojan Petelin ◽  
Iztok Tiselj
Author(s):  
Aurelia Chenu ◽  
Konstantin Mikityuk ◽  
Rakesh Chawla

In the framework of PSI’s FAST code system, the TRACE thermal-hydraulics code is being extended for representation of sodium two-phase flow. As the currently available version (v.5) is limited to the simulation of only single-phase sodium flow, its applicability range is not enough to study the behavior of a Sodium-cooled Fast Reactor (SFR) during a transient in which boiling is anticipated. The work reported here concerns the extension of the two-fluid models, which are available in TRACE for steam-water, to sodium two-phase flow simulation. The conventional correlations for ordinary gas-liquid flows are used as basis, with optional correlations specific to liquid metal when necessary. A number of new models for representation of the constitutive equations specific to sodium, with a particular emphasis on the interfacial transfer mechanisms, have been implemented and compared with the original closure models. As a first application, the extended TRACE code has been used to model experiments that simulate a loss-of-flow (LOF) accident in a SFR. The comparison of the computed results, with both the experimental data and SIMMER-III code predictions, has enabled validation of the capability of the modified TRACE code to predict sodium boiling onset, flow regimes, dryout, flow reversal, etc. The performed study is a first-of-a-kind application of the TRACE code to two-phase sodium flow. Other integral experiments are planned to be simulated to further develop and validate the two-phase sodium flow methodology.


Author(s):  
Hiroyuki Yoshida ◽  
Hideaki Hosoi ◽  
Takayuki Suzuki ◽  
Kazuyuki Takase

Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as rod bundles in nuclear reactors. However, two-fluid model include a lot of constitutive equations. Then, applicability of these constitutive equations must be verified by use of experimental results, and the two-fluid model has problems that the results of analyses depend on accuracy of constitutive equations. To solve these problems, we have been developing an advanced two-fluid model. In this model, an interface tracking method is combined with the two-fluid model to predict large interface structure behavior accurately. Interfacial structures larger than a computational cells, such as large droplets and bubbles, are calculated using the interface tracking method. And droplets and bubbles that are smaller than cells are simulated by the two-fluid model. Constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are required in the advanced two-fluid model as same as a conventional two-fluid model. However, dependency of small bubbles and droplets on two-phase flow characteristic is relatively small, and the experimental results to verify the equations are not required much. In this study, we modified the advanced two-fluid model to improve the stability of the numerical simulation and reduce the computational time. Moreover, the modified model was incorporated to the 3-dimensional two-fluid model code ACE-3D. In this paper, we describe the outline of this model and the modification performed in this study. Moreover, the numerical results of two-phase flow in various flow conditions.


1998 ◽  
Vol 120 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Iztok Tiselj ◽  
Stojan Petelin

The six-equation two-fluid model of two-phase flow taken from the RELAP5/MOD3 computer code has been used to simulate three simple transients: a two-phase shock tube problem, the Edwards Pipe experiment, and water hammer due to rapid valve closure. These transients can be characterized as fast transients, since their characteristic time-scales are determined by the sonic velocity. First and second-order accurate numerical methods have been applied both based on the well-known, Godunov-type numerical schemes. Regarding the uncertainty of the two-fluid models in today’s large computer codes for the nuclear thermal-hydraulics, use of second-order schemes is not always justified. While this paper shows the obvious advantage of second-order schemes in the area of fast transients, first-order accurate schemes may still be sufficient for a wide range of two-phase flow transients where the convection terms play a minor role compared to the source terms.


2010 ◽  
Author(s):  
K. Yan ◽  
Y. B. Zhang ◽  
D. C. Che ◽  
Z. H. Lin ◽  
Liejin Guo ◽  
...  

2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

Sign in / Sign up

Export Citation Format

Share Document