Interhabitat migration of juvenile Atlantic salmon in a Newfoundland river system, Canada,

1997 ◽  
Vol 51 (2) ◽  
pp. 373-388 ◽  
Author(s):  
J Erkinaro
1969 ◽  
Vol 26 (9) ◽  
pp. 2535-2537 ◽  
Author(s):  
J. H. C. Pippy

Bacterial kidney disease was presumptively identified in each of 25 hatchery-reared juvenile salmon (Salmo salar) but in only 2 of 235 wild juveniles in the Margaree River system. Apparently spread of disease from the hatchery to wild salmon in the river is very gradual.


1998 ◽  
Vol 55 (S1) ◽  
pp. 191-200 ◽  
Author(s):  
John F Kocik ◽  
C Paola Ferreri

Anadromous Atlantic salmon (Salmo salar) exhibit a complex life history that requires the use of habitats that span several different temporal and spatial scales. While fisheries scientists have investigated the various elements of habitat and how they affect Atlantic salmon growth and survival, these studies typically focus on requisite requirements for a single life history stage. Current advances in our understanding of salmonid populations in lotic systems indicates that ignoring the spatial positioning of different habitats and dispersal capabilities of fish between them may affect estimates of habitat quality and production of juvenile Atlantic salmon. Using the concepts of juxtaposition and interspersion, we hypothesize that discrete functional habitat units (FHU) occur within river systems and that the spatial structure of FHU affects fish production. We present a method to delineate FHU using habitat maps, fish ecology, and spatial habitat characteristics. Utilizing a simulation model, we illustrate how modeling FHU structure of spawning and rearing habitat in a river system can improve our understanding of juvenile Atlantic salmon production dynamics. The FHU concept allows a flexible approach to more comprehensive analyses of the impacts of habitat alterations, seasonal habitat shifts, and spatial ecology of salmonids at various scales.


1969 ◽  
Vol 47 (5) ◽  
pp. 759-761 ◽  
Author(s):  
J. A. McKenzie ◽  
U. Paim

The plasma proteins of 51 juvenile Atlantic salmon were examined by vertical acrylamide gel electrophoresis. Eight distinct phenotypes were found from specimens originating from a single river system in New Brunswick. The potential use of these polymorphisms for identifying populations is discussed.


Oecologia ◽  
2010 ◽  
Vol 165 (4) ◽  
pp. 959-969 ◽  
Author(s):  
Sigurd Einum ◽  
Grethe Robertsen ◽  
Keith H. Nislow ◽  
Simon McKelvey ◽  
John D. Armstrong

Sign in / Sign up

Export Citation Format

Share Document