Reversible S-nitrosation of Creatine Kinase by Nitric Oxide in Adult Rat Ventricular Myocytes

1998 ◽  
Vol 30 (5) ◽  
pp. 979-988 ◽  
Author(s):  
M Arstall
1999 ◽  
Vol 277 (3) ◽  
pp. H1189-H1199 ◽  
Author(s):  
David J. Pinsky ◽  
Walif Aji ◽  
Matthias Szabolcs ◽  
Eleni S. Athan ◽  
Youping Liu ◽  
...  

Excessive nitric oxide (NO) production within the heart is implicated in the pathogenesis of myocyte death, but the mechanism whereby NO kills cardiac myocytes is not known. To determine whether NO may trigger programmed cell death (apoptosis) of adult rat ventricular myocytes in culture, the NO donor S-nitroso- N-acetylpenicillamine (SNAP) was shown to kill purified cardiac myocytes in a dose-dependent fashion. In situ analysis of ventricular myocytes plated on chamber slides using nick-end labeling of DNA demonstrated that SNAP induces cardiac myocyte apoptosis, which was confirmed by the identification of oligonucleosomal DNA fragmentation on agarose gel electrophoresis. Similarly, treatment of cardiac myocytes with cytokines that induce inducible NO synthase was shown to cause an NO-dependent induction of apoptosis. Addition of reduced hemoglobin to scavenge NO liberated by SNAP extinguished both the increase in percentage of apoptotic cells and the appearance of DNA ladders. Treatment with SNAP (but not with N-acetylpenicillamine or SNAP + hemoglobin) not only induced apoptosis but resulted in a marked increase in p53 expression in cardiac myocytes detected by Western blotting and immunohistochemistry. These data indicate that NO has the capacity to kill cardiac myocytes by triggering apoptosis and suggest the involvement of p53 in this process.


2005 ◽  
Vol 98 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Hong Kan ◽  
Dale Birkle ◽  
Abnash C. Jain ◽  
Conard Failinger ◽  
Sherry Xie ◽  
...  

Stress is gaining increasing acceptance as an independent risk factor contributing to adverse cardiovascular outcomes. Potential mechanisms responsible for the deleterious effects of stress on the development and progression of cardiovascular disease remain to be elucidated. An established animal model of stress in humans is the prenatally stressed (PS) rat. We stressed rats in their third trimester of pregnancy by daily injections of saline and moving from cage to cage. Male offspring of these stressed dams (PS) and age-matched male control offspring (control) were further subjected to restraint stress (R) at 6 and 7 wk of age. Echocardiography revealed a significant decrease in fractional shortening in PS + R vs. controls + R (45.8 ± 3.9 vs. 61.9 ± 2.4%, PS + R vs. controls + R; P < 0.01; n = 12). Isolated adult rat ventricular myocytes from PS + R also revealed diminished fractional shortening (6.7 ± 0.8 vs. 12.7 ± 1.1%, PS + R vs. controls + R; P < 0.01; n = 24) and blunted inotropic responses to isoproterenol ( P < 0.01; n = 24) determined by automated border detection. The p38 mitogen-activated protein (MAP) kinase inhibitor SB-203580 blocked p38 MAP kinase phosphorylation, reversed the depression in fractional shortening, and partially ameliorated the blunted adrenergic signaling seen in adult rat ventricular myocytes from PS + R. Phosphorylation of p38 MAP kinase in cardiac myocytes by stress may be sufficient to lead to myocardial dysfunction in animal models and possibly humans.


2005 ◽  
Vol 102 (6) ◽  
pp. 1165-1173 ◽  
Author(s):  
Toshiya Shiga ◽  
Sandro Yong ◽  
Joseph Carino ◽  
Paul A. Murray ◽  
Derek S. Damron

Background Droperidol has recently been associated with cardiac arrhythmias and sudden cardiac death. Changes in action potential duration seem to be the cause of the arrhythmic behavior, which can lead to alterations in intracellular free Ca concentration ([Ca]i). Because [Ca]i and myofilament Ca sensitivity are key regulators of myocardial contractility, the authors' objective was to identify whether droperidol alters [Ca]i or myofilament Ca sensitivity in rat ventricular myocytes and to identify the cellular mechanisms responsible for these effects. Methods Freshly isolated rat ventricular myocytes were obtained from adult rat hearts. Myocyte shortening, [Ca]i, nitric oxide production, intracellular pH, and action potentials were monitored in cardiomyocytes exposed to droperidol. Langendorff perfused hearts were used to assess overall cardiac function. Results Droperidol (0.03-1 mum) caused concentration-dependent decreases in peak [Ca]i and shortening. Droperidol inhibited 35 mm KCl-induced increase in [Ca]i, with little direct effect on sarcoplasmic reticulum Ca stores. Droperidol had no effect on action potential duration but caused a rightward shift in the concentration-response curve to extracellular Ca for shortening, with no concomitant effect on peak [Ca]i. Droperidol decreased pHi and increased nitric oxide production. Droperidol exerted a negative inotropic effect in Langendorff perfused hearts. Conclusion These data demonstrate that droperidol decreases cardiomyocyte function, which is mediated by a decrease in [Ca]i and a decrease in myofilament Ca sensitivity. The decrease in [Ca]i is mediated by decreased sarcolemmal Ca influx. The decrease in myofilament Ca sensitivity is likely mediated by a decrease in pHi and an increase in nitric oxide production.


Sign in / Sign up

Export Citation Format

Share Document