Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocytes in culture

1999 ◽  
Vol 277 (3) ◽  
pp. H1189-H1199 ◽  
Author(s):  
David J. Pinsky ◽  
Walif Aji ◽  
Matthias Szabolcs ◽  
Eleni S. Athan ◽  
Youping Liu ◽  
...  

Excessive nitric oxide (NO) production within the heart is implicated in the pathogenesis of myocyte death, but the mechanism whereby NO kills cardiac myocytes is not known. To determine whether NO may trigger programmed cell death (apoptosis) of adult rat ventricular myocytes in culture, the NO donor S-nitroso- N-acetylpenicillamine (SNAP) was shown to kill purified cardiac myocytes in a dose-dependent fashion. In situ analysis of ventricular myocytes plated on chamber slides using nick-end labeling of DNA demonstrated that SNAP induces cardiac myocyte apoptosis, which was confirmed by the identification of oligonucleosomal DNA fragmentation on agarose gel electrophoresis. Similarly, treatment of cardiac myocytes with cytokines that induce inducible NO synthase was shown to cause an NO-dependent induction of apoptosis. Addition of reduced hemoglobin to scavenge NO liberated by SNAP extinguished both the increase in percentage of apoptotic cells and the appearance of DNA ladders. Treatment with SNAP (but not with N-acetylpenicillamine or SNAP + hemoglobin) not only induced apoptosis but resulted in a marked increase in p53 expression in cardiac myocytes detected by Western blotting and immunohistochemistry. These data indicate that NO has the capacity to kill cardiac myocytes by triggering apoptosis and suggest the involvement of p53 in this process.

1997 ◽  
Vol 273 (4) ◽  
pp. C1371-C1377 ◽  
Author(s):  
Anthony J. Kanai ◽  
Stephan Mesaros ◽  
Mitchell S. Finkel ◽  
Carmine V. Oddis ◽  
Lori A. Birder ◽  
...  

Nitric oxide (NO) has been implicated in endogenous control of myocardial contractility. However, NO release has not yet been demonstrated in cardiac myocytes. Accordingly, endogenous NO production was measured with a porphyrinic microsensor positioned on the surface of individual neonatal or adult rat ventricular myocytes ( n > 6 neonatal and adult cells per experiment). In beating neonatal myocytes, there was no detectable spontaneous NO release with each contraction. However, norepinephrine (NE; 0.25–1 μM) elicited transient NO release from beating neonatal (149 ± 11 to 767 ± 83 nM NO) and noncontracting adult (157 ± 13 to 791 ± 89 nM NO) cells. NO was released by adrenergic agonists with the following rank order of potency: isoproterenol (β1β2) > NE (α/β1) > dobutamine (β1) ≈ epinephrine (α/β1β2) > tertbutylene (β2); NO was not released by phenylephrine (α). NE-evoked NO release was reversibly blocked by N G-monomethyl-l-arginine, trifluoperazine, guanosine 5′- O-(2-thiodiphosphate), and nifedipine but was enhanced by 3-isobutyl-1-methylxanthine (0.5 mM = 14.5 ± 1.6%) and BAY K 8644 (10 μM = 11.9 ± 1%). NO was also released by A-23187 (10 μM = 884 ± 88 nM NO), guanosine 5′- O-(3-thiotriphosphate) (1 μM = 334 ± 56 nM NO), and dibutyryl adenosine 3′,5′-cyclic monophosphate (10–100 μM = 35 ± 9 to 284 ± 49 nM NO) but not by ATP, bradykinin, carbachol, 8-bromoguanosine 3′,5′-cyclic monophosphate, or shear stress. This first functional demonstration of a constitutive NO synthase in cardiac myocytes suggests its regulation by a β-adrenergic signaling pathway and may provide a novel mechanism for the coronary artery vasodilatation and enhanced diastolic relaxation observed with adrenergic stimulation.


2005 ◽  
Vol 98 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Hong Kan ◽  
Dale Birkle ◽  
Abnash C. Jain ◽  
Conard Failinger ◽  
Sherry Xie ◽  
...  

Stress is gaining increasing acceptance as an independent risk factor contributing to adverse cardiovascular outcomes. Potential mechanisms responsible for the deleterious effects of stress on the development and progression of cardiovascular disease remain to be elucidated. An established animal model of stress in humans is the prenatally stressed (PS) rat. We stressed rats in their third trimester of pregnancy by daily injections of saline and moving from cage to cage. Male offspring of these stressed dams (PS) and age-matched male control offspring (control) were further subjected to restraint stress (R) at 6 and 7 wk of age. Echocardiography revealed a significant decrease in fractional shortening in PS + R vs. controls + R (45.8 ± 3.9 vs. 61.9 ± 2.4%, PS + R vs. controls + R; P < 0.01; n = 12). Isolated adult rat ventricular myocytes from PS + R also revealed diminished fractional shortening (6.7 ± 0.8 vs. 12.7 ± 1.1%, PS + R vs. controls + R; P < 0.01; n = 24) and blunted inotropic responses to isoproterenol ( P < 0.01; n = 24) determined by automated border detection. The p38 mitogen-activated protein (MAP) kinase inhibitor SB-203580 blocked p38 MAP kinase phosphorylation, reversed the depression in fractional shortening, and partially ameliorated the blunted adrenergic signaling seen in adult rat ventricular myocytes from PS + R. Phosphorylation of p38 MAP kinase in cardiac myocytes by stress may be sufficient to lead to myocardial dysfunction in animal models and possibly humans.


2018 ◽  
Vol 115 (18) ◽  
pp. 4672-4677 ◽  
Author(s):  
Seung-Hyun Lee ◽  
Jaesung Seo ◽  
Soo-Yeon Park ◽  
Mi-Hyeon Jeong ◽  
Hyo-Kyoung Choi ◽  
...  

Programmed cell death 5 (PDCD5) has been associated with human cancers as a regulator of cell death; however, the role of PDCD5 in the endothelium has not been revealed. Thus, we investigated whether PDCD5 regulates protein kinase B (PKB/AKT)-endothelial nitric oxide synthase (eNOS)–dependent signal transduction in the endothelium and affects atherosclerosis. Endothelial-specific PDCD5 knockout mice showed significantly reduced vascular remodeling compared with wild-type (WT) mice after partial carotid ligation. WT PDCD5 competitively inhibited interaction between histone deacetylase 3 (HDAC3) and AKT, but PDCD5L6R, an HDAC3-binding–deficient mutant, did not. Knockdown of PDCD5 accelerated HDAC3–AKT interaction, AKT and eNOS phosphorylation, and nitric oxide (NO) production in human umbilical vein endothelial cells. Moreover, we found that serum PDCD5 levels reflect endothelial NO production and are correlated with diabetes mellitus, high-density lipoprotein cholesterol, and coronary calcium in human samples obtained from the cardiovascular high-risk cohort. Therefore, we conclude that PDCD5 is associated with endothelial dysfunction and may be a novel therapeutic target in atherosclerosis.


2001 ◽  
Vol 281 (5) ◽  
pp. C1542-C1550 ◽  
Author(s):  
Shan Wei ◽  
Emily C. Rothstein ◽  
Larry Fliegel ◽  
Louis J. Dell'Italia ◽  
Pamela A. Lucchesi

Bursts in reactive oxygen species production are important mediators of contractile dysfunction during ischemia-reperfusion injury. Cellular mechanisms that mediate reactive oxygen species-induced changes in cardiac myocyte function have not been fully characterized. In the present study, H2O2 (50 μM) decreased contractility of adult rat ventricular myocytes. H2O2 caused a concentration- and time-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38, and c-Jun NH2-terminal kinase (JNK) mitogen-activated protein (MAP) kinases in adult rat ventricular myocytes. H2O2(50 μM) caused transient activation of ERK1/2 and p38 MAP kinase that was detected as early as 5 min, was maximal at 20 min (9.6 ± 1.2- and 9.0 ± 1.6-fold, respectively, vs. control), and returned to baseline at 60 min. JNK activation occurred more slowly (1.6 ± 0.2-fold vs. control at 60 min) but was sustained at 3.5 h. The protein kinase C inhibitor chelerythrine completely blocked JNK activation and reduced ERK1/2 and p38 activation. The tyrosine kinase inhibitors genistein and PP-2 blocked JNK, but not ERK1/2 and p38, activation. H2O2-induced Na+/H+ exchanger phosphorylation was blocked by the MAP kinase kinase inhibitor U-0126 (5 μM). These results demonstrate that H2O2-induced activation of MAP kinases may contribute to cardiac myocyte dysfunction during ischemia-reperfusion.


2004 ◽  
Vol 72 (1) ◽  
pp. 359-363 ◽  
Author(s):  
Laura Edith Fichera ◽  
Maria Cecilia Albareda ◽  
Susana Adriana Laucella ◽  
Miriam Postan

ABSTRACT The effect of interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) on Trypanosoma cruzi multiplication and nitric oxide (NO) production in cardiac myocytes was investigated. Cardiac myocyte cultures were obtained from neonatal Wistar rat hearts, infected with T. cruzi, and treated with IL-1β, TNF-α, IFN-γ, or N-monomethyl-l-arginine (l-NAME) for 72 h. Parasite growth was calculated from the number of infected cells in Giemsa-stained smears. Nitric oxide production was determined with the Griess reagent. Inducible nitric oxide synthase (iNOS) expression by cardiac myocytes was detected by Western blot. The results showed that the percentages of cardiac myocytes containing T. cruzi amastigotes in cytokine-treated cultures were significantly lower than in nontreated cultures. The addition of l-NAME reversed the inhibitory effect on parasite growth of IL-1β and TNF-α but not of IFN-γ. Nitrite levels released by T. cruzi-infected and noninfected cardiac myocyte cultures after 72 h of stimulation with IL-1β were significantly higher than those produced upon treatment with TNF-α, IFN-γ, or medium alone, regardless of the infection status. Nitrite levels in TNF-α-stimulated infected cultures were significantly higher than in untreated infected cultures and TNF-α-treated noninfected cultures. l-NAME inhibited IL-1β- but not TNF-α-induced NO production, indicating the presence of iNOS-dependent and iNOS-independent mechanisms for NO formation in this experimental system. iNOS expression was detected in infected and noninfected cardiac myocytes stimulated with IL-1 β and TNF-α but not with IFN-γ. These results suggest an important role for cardiac myocytes and locally secreted cytokines in the control of parasite multiplication in T. cruzi-induced myocarditis.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


Sign in / Sign up

Export Citation Format

Share Document