Molecular and morphological studies on the subantarctic genus Orceolina (Agyriaceae)

2001 ◽  
Vol 33 (4) ◽  
pp. 323-329 ◽  
Author(s):  
R.S. Poulsen ◽  
I. Schmitt ◽  
U. Søchting ◽  
H. T. Lumbsch

AbstractThe subantarctic genus Orceolina is revised and two species are accepted, i.e. Orceolina antarctica Mull. Arg. R. S. Poulsen Søchting comb. nov. and Orceolina kerguelensis (Tuck.) Hertel. Descriptions of the species are provided. In addition the phylogeny of the genus Orceolina and allied taxa was investigated using nucleotide sequences of the LSU rRNA gene. Sequences from these regions of nine agyrialean fungi were aligned to those of four representatives of Pertusariales used as outgroup. The alignment was analysed cladistically using maximum parsimony. The two Orceolina clustered together within the Agyriaceae. The placement in the family is supported by high bootstrap values and the Kishino-Hasegawa test.

2001 ◽  
Vol 33 (2) ◽  
pp. 161-170 ◽  
Author(s):  
H. Thorsten Lumbsch ◽  
Imke Schmitt

AbstractThe phylogeny of the genus Pertusaria and allied taxa was investigated using nucleotide sequences of the LSU rRNA gene. Sequences from these regions of 15 pertusarialean fungi were aligned to those of three representatives of Agyriales used as outgroup. The alignment was analysed cladistically using maximum parsimony. The Pertusariaceae appear paraphyletic bearing the monophyletic Coccotremataceae on a clade including Ochrolechia and Pertusaria subg. Monomuratae, but monophyly of the family cannot be rejected. The genus Pertusaria is polyphyletic, with the subgenus Monomuratae more closely related to the Coccotremataceae and Ochrolechia than to taxa of the subgenera Pertusaria and Pionospora. Monophyly of the genus Pertusaria is rejected. The monophyly of the subgenera Pertusaria and Pionospora is also rejected. The distribution of selected characters in the Pertusariales is investigated and it is shown that apothecial form and spore wall number have changed in parallel within Pertusaria. The Pertusaria-type ascus is plesiomorphic within the Pertusariaceae and thus cannot be used to circumscribe Pertusaria. The presence of chlorinated xanthones is restricted to Pertusaria s. str


2020 ◽  
Vol 70 (11) ◽  
pp. 5665-5670
Author(s):  
Varunya Sakpuntoon ◽  
Jirameth Angchuan ◽  
Chanita Boonmak ◽  
Pannida Khunnamwong ◽  
Noémie Jacques ◽  
...  

Two strains (DMKU-GTCP10-8 and CLIB 1740) representing a novel anamorphic yeast species were isolated from a grease sample collected from a grease trap in Thailand and from an unidentified fungus collected in French Guiana, respectively. On the basis of phylogenetic analysis based on the combined D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, Lachancea fermentati CBS 707T was the closely related species with 12.8 % sequence divergence (70 nucleotide substitutions and three gaps in 571 nucleotides) and 28.1 % sequence divergence (93 nucleotide substitutions and 90 gaps in 651 nucleotides) in the D1/D2 domain of the LSU rRNA gene and the ITS region, respectively. Phylogenetic analysis based on the concatenated sequences of the five genes including the small subunit rRNA gene, the D1/D2 domain of the LSU rRNA gene, the ITS region, translation elongation factor-1 alpha (TEF1) and RNA polymerase II subunit 2 (RPB2) genes confirmed that the two strains (DMKU-GTCP10-8 and CLIB 1740) were well-separated from other described yeast genera in Saccharomycetaceae. Hence, Savitreea pentosicarens gen. nov., sp. nov. is proposed to accommodate these two strains as members of the family Saccharomycetaceae. The holotype is S. pentosicarens DMKU-GTCP10-8T (ex-type strain TBRC 12159=PYCC 8490; MycoBank number 835044).


2020 ◽  
Vol 70 (5) ◽  
pp. 3374-3378 ◽  
Author(s):  
Thelma T. S. Matos ◽  
Juliana F. Teixeira ◽  
Laura G. Macías ◽  
Ana Raquel O. Santos ◽  
Sung-Oui Suh ◽  
...  

Kluyveromyces osmophilus, a single-strain species isolated from Mozambique sugar, has been treated a synonym of Zygosaccharomyces mellis. Analyses of D1/D2 LSU rRNA gene sequences confirmed that the species belongs to the genus Zygosaccharomyces but showed it to be distinct from strains of Z. mellis. During studies of yeasts associated with stingless bees in Brazil, nine additional isolates of the species were obtained from unripe and ripe honey and pollen of Scaptotrigona cfr. bipunctata, as well as ripe honey of Tetragonisca angustula. The D1/D2 sequences of the Brazilian isolates were identical to those of the type strain of K. osmophilus CBS 5499 (=ATCC 22027), indicating that they represent the same species. Phylogenomic analyses using 4038 orthologous genes support the reinstatement of K. osmophilus as a member of the genus Zygosaccharomyces. We, therefore, propose the name Zygosaccharomyces osmophilus comb. nov. (lectotype ATCC 22027; MycoBank no. MB 833739).


2010 ◽  
Vol 60 (10) ◽  
pp. 2496-2500 ◽  
Author(s):  
Gábor Péter ◽  
Judit Tornai-Lehoczki ◽  
Dénes Dlauchy

Six ascosporulating Candida pignaliae strains were isolated from epigeal plant parts in Hungary. They share identical D1/D2 LSU rRNA gene sequences with the type strain of C. pignaliae, and the physiological characteristics investigated are also very similar to that of the type strain. The only substantial difference compared to the type strain of C. pignaliae is their ability to assimilate β-glucosides (cellobiose, salicin and arbutin). The majority of the isolation sources of the strains reported in this study have the common feature of containing tannic acid, while the type strain of C. pignaliae was recovered from tanning fluid. We were able to induce ascosporulation also in the type strain of C. pignaliae. Therefore, Ogataea pignaliae Péter, Tornai-Lehoczki & Dlauchy sp. nov. is proposed as the teleomorph of C. pignaliae (F. H. Jacob) S. A. Meyer & Yarrow. The type strain is CBS 6071T.


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2289-2295 ◽  
Author(s):  
Madalin Enache ◽  
Takashi Itoh ◽  
Tadamasa Fukushima ◽  
Ron Usami ◽  
Lucia Dumitru ◽  
...  

In order to clarify the current phylogeny of the haloarchaea, particularly the closely related genera that have been difficult to sort out using 16S rRNA gene sequences, the DNA-dependent RNA polymerase subunit B′ gene (rpoB′) was used as a complementary molecular marker. Partial sequences of the gene were determined from 16 strains of the family Halobacteriaceae. Comparisons of phylogenetic trees inferred from the gene and protein sequences as well as from corresponding 16S rRNA gene sequences suggested that species of the genera Natrialba, Natronococcus, Halobiforma, Natronobacterium, Natronorubrum, Natrinema/Haloterrigena and Natronolimnobius formed a monophyletic group in all trees. In the RpoB′ protein tree, the alkaliphilic species Natrialba chahannaoensis, Natrialba hulunbeirensis and Natrialba magadii formed a tight group, while the neutrophilic species Natrialba asiatica formed a separate group with species of the genera Natronorubrum and Natronolimnobius. Species of the genus Natronorubrum were split into two groups in both the rpoB′ gene and protein trees. The most important advantage of the use of the rpoB′ gene over the 16S rRNA gene is that sequences of the former are highly conserved amongst species of the family Halobacteriaceae. All sequences determined so far can be aligned unambiguously without any gaps. On the other hand, gaps are necessary at 49 positions in the inner part of the alignment of 16S rRNA gene sequences. The rpoB′ gene and protein sequences can be used as an excellent alternative molecular marker in phylogenetic analysis of the Halobacteriaceae.


2018 ◽  
Author(s):  
Jürgen F. H. Strassert ◽  
Elisabeth Hehenberger ◽  
Javier del Campo ◽  
Noriko Okamoto ◽  
Martin Kolisko ◽  
...  

ABSTRACTSpores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium to analyse the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.


Sign in / Sign up

Export Citation Format

Share Document