Bacterial Expression of a Natively Folded Extracellular Domain Fusion Protein of the hFSH Receptor in the Cytoplasm of Escherichia coli

2002 ◽  
Vol 25 (1) ◽  
pp. 124-133 ◽  
Author(s):  
Leslie Lobel ◽  
Susan Pollak ◽  
Brandie Lustbader ◽  
Jeffrey Klein ◽  
Joyce W. Lustbader
1999 ◽  
Vol 64 (8) ◽  
pp. 1348-1356 ◽  
Author(s):  
Michaela Rumlová-Kliková ◽  
Iva Pichová ◽  
Eric Hunter ◽  
Tomáš Ruml

It has been generally accepted that inclusion bodies (IBs) formed in Escherichia coli consist of non-biologically active aggregated proteins, which are stabilized by non-productive interactions. We show here that bacterial expression of a retroviral capsid polyprotein results in formation of insoluble IBs that contain fully assembled viral particles connected with amorphous material. The efficiency of IBs formation and capsid assembly was not significantly affected by changes in induction temperature, pH of cultivation medium or the level of expression.


Author(s):  
Fatemeh Sadat Javadian ◽  
Majid Basafa ◽  
Aidin Behravan ◽  
Atieh Hashemi

Abstract Background Overexpression of the EpCAM (epithelial cell adhesion molecule) in malignancies makes it an attractive target for passive immunotherapy in a wide range of carcinomas. In comparison with full-length antibodies, due to the small size, the scFvs (single-chain variable fragments) are more suitable for recombinant expression in E. coli (Escherichia coli). However, the proteins expressed in large amounts in E. coli tend to form inclusion bodies that need to be refolded which may result in poor recovery of bioactive proteins. Various engineered strains were shown to be able to alleviate the insolubility problem. Here, we studied the impact of four E. coli strains on the soluble level of anti-EpEX-scFv (anti-EpCAM extracellular domain-scFv) protein. Results Although results showed that the amount of soluble anti-EpEX-scFv obtained in BL21TM (DE3) (114.22 ± 3.47 mg/L) was significantly higher to those produced in the same condition in E. coli RosettaTM (DE3) (71.39 ± 0.31 mg/L), and OrigamiTM T7 (58.99 ± 0.44 mg/L) strains, it was not significantly different from that produced by E. coli SHuffleTM T7 (108.87 ± 2.71 mg/L). Furthermore, the highest volumetric productivity of protein reached 318.29 ± 26.38 mg/L in BL21TM (DE3). Conclusions Although BL21TM (DE3) can be a suitable strain for high-level production of anti-EpEX-scFv protein, due to higher solubility yield (about 55%), E. coli SHuffleTM T7 seems to be better candidate for soluble production of scfv compared to BL21TM (DE3) (solubility yield of about 30%).


2021 ◽  
Vol 141 ◽  
pp. 111825
Author(s):  
Zhenqingyun Shuai ◽  
Yongxiang Zheng ◽  
Jia Jiang ◽  
Rong Yu ◽  
Chun Zhang

1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


Sign in / Sign up

Export Citation Format

Share Document