epithelial cell adhesion molecule
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 47)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
pp. 1-1
Author(s):  
Zili Lei ◽  
Yuting Lei ◽  
Guibin Chen ◽  
Shaomin Liu ◽  
Wanwan Liu ◽  
...  

The epithelial cell adhesion molecule (EpCAM) is highly expressed in the liver during development and diseases. However, its role in the development and pathology of liver remains to be explored. The liver tissues of EpCAM-/- and wildtype (WT) mice at P0 stage were used for RNA sequencing. The differently expressed miRNAs, lncRNAs and mRNAs were selected and confirmed by qPCR. The expression of metabolism-related gene SET domain bifurcated 2 (Setdb2) was significantly increased in the liver of EpCAM-/- mice; the triglyceride (TG) and total cholesterol (TC) levels in the liver were also markedly decreased in EpCAM-/- mice. The microRNA (miRNA)-long noncoding RNA (lncRNA)-mRNA regulatory networks indicated that EpCAM may play important roles in glucose and lipid metabolism of the liver during development and in disease. The comprehensive miRNA, lncRNA and mRNA expression profiles in the developing liver of EpCAM-/- mice established here might help to elucidate functions and mechanisms of EpCAM during development and in diseases of the liver.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 198
Author(s):  
Giorgio Ivan Russo ◽  
Nicolò Musso ◽  
Alessandra Romano ◽  
Giuseppe Caruso ◽  
Salvatore Petralia ◽  
...  

Liquid biopsy is emerging as a potential diagnostic tool for prostate cancer (PC) prognosis and diagnosis. Unfortunately, most circulating tumor cells (CTC) technologies, such as AdnaTest or Cellsearch®, critically rely on the epithelial cell adhesion molecule (EpCAM) marker, limiting the possibility of detecting cancer stem-like cells (CSCs) and mesenchymal-like cells (EMT-CTCs) that are present during PC progression. In this context, dielectrophoresis (DEP) is an epCAM independent, label-free enrichment system that separates rare cells simply on the basis of their specific electrical properties. As compared to other technologies, DEP may represent a superior technique in terms of running costs, cell yield and specificity. However, because of its higher complexity, it still requires further technical as well as clinical development. DEP can be improved by the use of microfluid, nanostructured materials and fluoro-imaging to increase its potential applications. In the context of cancer, the usefulness of DEP lies in its capacity to detect CTCs in the bloodstream in their epithelial, mesenchymal, or epithelial–mesenchymal phenotype forms, which should be taken into account when choosing CTC enrichment and analysis methods for PC prognosis and diagnosis.


Author(s):  
Giorgio I. Russo ◽  
Nicolò Musso ◽  
Alessandra Romano ◽  
Giuseppe Caruso ◽  
Salvatore Petralia ◽  
...  

Liquid biopsy via isolation of circulating tumour cells (CTCs) represents a promising diagnostic tool capable of supplementing state-of-the-art for prostate cancer (PC) prognosis. Unfortunately, most of CTC technologies, such as AdnaTest or Cellsearch, critically rely on the Epithelial-Cell-Adhesion-Molecule (EpCAM) marker, limiting the possibility of detecting stem-like cells (CSCs) and mesenchymal-like cells (EMT-CTCs) that are present during PC progression. In this tontext, dielectrophoresis (DEP) is an epCAM independent, label-free, enrichment system, separating rare cells simply on the basis of their specific electrical properties. As compared to other technollgies, DEP represents a superior technique in terms of running costs, cells yield and specificity, but due to its higher complexity, requires still further technical as well as clinical development. Interestingly, DEP can be improved by the use of microfluid, nanostructured materials and fluoroimaging in order to increase its potential applications. In the context of PC, the utility of DEP can be translated in its capacity to detect CTC in the bloodstream in their epithelial, mesenchymal, or epithelial-mesenchymal phenotypes, which should be taken into account when choosing CTC enrichment and analysis methods for PC prognosis and early diagnosis.


2021 ◽  
Author(s):  
Saad Misfer Al‐Qahtani ◽  
Salah Eldin Gadalla ◽  
Min Guo ◽  
Christer Ericsson ◽  
Daniel Hägerstrand ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10777
Author(s):  
Yang Gao ◽  
Wan-Hung Fan ◽  
Zhengbo Song ◽  
Haizhou Lou ◽  
Xixong Kang

Purpose Status of epithelial-mesenchymal transition (EMT) varies from tumors to tumors. Epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) are the most common used targets for isolating epithelial and mesenchymal CTCs, respectively. This study aimed to identify a suitable CTC capturing antibody for CTC enrichment in each solid tumor by comparing CTC detection rates with EpCAM and CSV antibodies in different solid tumors. Methods Treatment-naive patients with confirmed cancer diagnosis and healthy people who have performed CTC detection between April 2017 and May 2018 were included in this study. CTC detection was performed with CytoSorter® CTC system using either EpCAM or CSV antibody. In total, 853 CTC results from 690 cancer patients and 72 healthy people were collected for analysis. The performance of CTC capturing antibody was determined by the CTC detection rate. Results EpCAM has the highest CTC detection rate of 84.09% in CRC, followed by BCa (78.32%). CTC detection rates with EpCAM antibody are less than 40% in HCC (25%), PDAC (32.5%) and OC (33.33%). CSV has the highest CTC detection rate of 90% in sarcoma, followed by BC (85.71%), UC (84.62%), OC (83.33%) and BCa (81.82%). CTC detection rates with CSV antibody are over 60% in all 14 solid tumors. Except for CRC, CSV has better performances than EpCAM in most solid tumors regarding the CTC detection rates. Conclusion EpCAM can be used as a target to isolate CTCs in CRC, LC, GC, BCa, EC, HNSCC, CC and PCa, especially in CRC, while CSV can be used in most solid tumors for isolating CTCs.


Author(s):  
Fatemeh Sadat Javadian ◽  
Majid Basafa ◽  
Aidin Behravan ◽  
Atieh Hashemi

Abstract Background Overexpression of the EpCAM (epithelial cell adhesion molecule) in malignancies makes it an attractive target for passive immunotherapy in a wide range of carcinomas. In comparison with full-length antibodies, due to the small size, the scFvs (single-chain variable fragments) are more suitable for recombinant expression in E. coli (Escherichia coli). However, the proteins expressed in large amounts in E. coli tend to form inclusion bodies that need to be refolded which may result in poor recovery of bioactive proteins. Various engineered strains were shown to be able to alleviate the insolubility problem. Here, we studied the impact of four E. coli strains on the soluble level of anti-EpEX-scFv (anti-EpCAM extracellular domain-scFv) protein. Results Although results showed that the amount of soluble anti-EpEX-scFv obtained in BL21TM (DE3) (114.22 ± 3.47 mg/L) was significantly higher to those produced in the same condition in E. coli RosettaTM (DE3) (71.39 ± 0.31 mg/L), and OrigamiTM T7 (58.99 ± 0.44 mg/L) strains, it was not significantly different from that produced by E. coli SHuffleTM T7 (108.87 ± 2.71 mg/L). Furthermore, the highest volumetric productivity of protein reached 318.29 ± 26.38 mg/L in BL21TM (DE3). Conclusions Although BL21TM (DE3) can be a suitable strain for high-level production of anti-EpEX-scFv protein, due to higher solubility yield (about 55%), E. coli SHuffleTM T7 seems to be better candidate for soluble production of scfv compared to BL21TM (DE3) (solubility yield of about 30%).


Sign in / Sign up

Export Citation Format

Share Document