Neoglacial Glacier Fluctuations in the Canadian Rockies

1993 ◽  
Vol 39 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Brian H. Luckman ◽  
Gerald Holdsworth ◽  
Gerald D. Osborn

AbstractThe Little Ice Age was the most extensive Neoglacial glacier advance in the Canadian Rockies. Evidence of earlier, less-extensive Neoglacial glacier advances is based on wood recovered from several glacier forefields. Wood flushed out of Athabasca Glacier (7550-8230 yr B.P., three dates) and Dome Glacier (6120-6380 yr B.P., two dates) indicates that forests occurred upvalley of present glacier termini during the Hypsithermal. Detrital logs from Peyto (14 dates), Saskatchewan (3 dates), Robson (3 dates), and Yoho (1 date) Glaciers, plus in situ slumps at Peyto and Robson Glaciers, have yielded 14 C dates between 2490 and 3300 yr B.P. (12 dates between 2800 and 2990). This wood is derived from sources at or upvalley from present glacier termini and represents forests overridden by glaciers between ca. 3100 and 2500 yr B.P. (Treeline was higher than present immediately prior to this advance.) This advance, which did not extend beyond the Little Ice Age maximum position, is designated the Peyto Advance and correlated with the Tiedemann Advance in western British Columbia. Earliest Little Ice Age advances at Peyto and Robson Glaciers are dated ca. 800-600 yr B.P. at positions ca. 500 m upvalley from Little Ice Age limits.

2017 ◽  
Vol 54 (11) ◽  
pp. 1153-1164 ◽  
Author(s):  
B.H. Luckman ◽  
M.H. Masiokas ◽  
K. Nicolussi

As glaciers in the Canadian Rockies recede, glacier forefields continue to yield subfossil wood from sites overridden by these glaciers during the Holocene. Robson Glacier in British Columbia formerly extended below tree line, and recession over the last century has progressively revealed a number of buried forest sites that are providing one of the more complete records of glacier history in the Canadian Rockies during the latter half of the Holocene. The glacier was advancing ca. 5.5 km upvalley of the Little Ice Age terminus ca. 5.26 cal ka BP, at sites ca. 2 km upvalley ca. 4.02 cal ka BP and ca. 3.55 cal ka BP, and 0.5–1 km upvalley between 1140 and 1350 A.D. There is also limited evidence based on detrital wood of an additional period of glacier advance ca. 3.24 cal ka BP. This record is more similar to glacier histories further west in British Columbia than elsewhere in the Rockies and provides the first evidence for a post-Hypsithermal glacier advance at ca. 5.26 cal ka BP in the Rockies. The utilization of the wiggle-matching approach using multiple 14C dates from sample locations determined by dendrochronological analyses enabled the recognition of 14C outliers and an increase in the precision and accuracy of the dating of glacier advances.


2007 ◽  
Vol 50 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Daniel J. Smith ◽  
Colin P. Laroque

ABSTRACT Dendrochronological investigations at Moving Glacier provide the first calendar-dating of a Little Ice Age glacier advance on Vancouver Island. In 1931, Moving Glacier was within 30 to 50 m of a distinct trimline and terminal moraine marking its maximum Little Ice Age extent. A reconnaissance of the site in 1993 revealed the presence of sheared in situ stumps and detrital trunks inside the 1931 ice limit. Sampling in 1994 showed the site was covered by a mature subalpine forest prior to the glacial advance which overrode the site after 1718 A.D. Following this period of expansion, which saw Moving Glacier expand to its maximum Little Ice Age position after 1818 A.D., the glacier apparently experienced only minimal retreat prior to first being photographed in 1931.


2017 ◽  
Vol 54 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Vikki M. St-Hilaire ◽  
Dan J. Smith

Frank Mackie Glacier repeatedly advanced across the Bowser River valley in northwestern British Columbia to impound Tide Lake during the Holocene. The most recent infilling of Tide Lake was associated with a late Little Ice Age glacier advance and ended around 1930 when the lake catastrophically drained. Over the last century Frank Mackie Glacier has retreated and down wasted to reveal multiple glaciogenic sedimentary units within the proximal faces of prominent lateral moraines. The units are separated by buried in-situ tree stumps and laterally contiguous wood mats deposited on paleosols. Dendroglaciological and radiocarbon dating of these wood remains show that Frank Mackie Glacier expanded into standing forests at 3710–3300, 2700–2200, 1700–1290, 900–500, and 250–100 cal. years BP. These advances coincide closely in time with the previously established Tide Lake glacier dam chronology and with the Holocene history of other glaciers in the Bowser River watershed. The findings emphasize the likelihood that most glaciers within northwestern British Columbia underwent substantial size and mass balance changes over the last 4000 years, and often spent hundreds of years in advanced positions before retreating.


2007 ◽  
Vol 44 (9) ◽  
pp. 1215-1233 ◽  
Author(s):  
Johannes Koch ◽  
John J Clague ◽  
Gerald D Osborn

The Little Ice Age glacier history in Garibaldi Provincial Park (southern Coast Mountains, British Columbia) was reconstructed using geomorphic mapping, radiocarbon ages on fossil wood in glacier forefields, dendrochronology, and lichenometry. The Little Ice Age began in the 11th century. Glaciers reached their first maximum of the past millennium in the 12th century. They were only slightly more extensive than today in the 13th century, but advanced at least twice in the 14th and 15th centuries to near their maximum Little Ice Age positions. Glaciers probably fluctuated around these advanced positions from the 15th century to the beginning of the 18th century. They achieved their greatest extent between A.D. 1690 and 1720. Moraines were deposited at positions beyond present-day ice limits throughout the 19th and early 20th centuries. Glacier fluctuations appear to be synchronous throughout Garibaldi Park. This chronology agrees well with similar records from other mountain ranges and with reconstructed Northern Hemisphere temperature series, indicating global forcing of glacier fluctuations in the past millennium. It also corresponds with sunspot minima, indicating that solar irradiance plays an important role in late Holocene climate change.


1990 ◽  
Vol 27 (2) ◽  
pp. 281-290 ◽  
Author(s):  
J. R. Desloges ◽  
J. M. Ryder

The maximum Holocene extent of glaciers in the study area is marked by late Neoglacial (Little Ice Age) terminal moraines. Moraine stratigraphy and 14C dates from a small number of sites suggest that glacier advance, almost as extensive as that of the late Neoglacial, occurred about 2500 14C years BP, and that late Neoglacial advance began well before 770 14C years BP (or the thirteenth century A.D.); glacier termini then stood close to the position of the climax moraines for several centuries. Dates of stabilization of end moraines at 16 glaciers were determined by dendrochronology, with tree-ring counts corrected for sampling errors and ecesis. Most terminal moraines date from 1860 to 1900. Many recessional moraines were formed between 1900 and 1940, coincident with a regionally documented phase of cooler and wetter climate. The proposed chronology is similar to results from elsewhere in the Canadian Cordillera.


Boreas ◽  
2018 ◽  
Vol 48 (3) ◽  
pp. 535-550 ◽  
Author(s):  
Kathryn Adamson ◽  
Timothy Lane ◽  
Matthew Carney ◽  
Thomas Bishop ◽  
Cathy Delaney

2001 ◽  
Vol 38 (8) ◽  
pp. 1141-1155 ◽  
Author(s):  
G D Osborn ◽  
B J Robinson ◽  
B H Luckman

The Holocene and late glacial history of fluctuations of Stutfield Glacier are reconstructed using moraine stratigraphy, tephrochronology, and dendroglaciology. Stratigraphic sections in the lateral moraines contain tills from at least three glacier advances separated by volcanic tephras and paleosols. The oldest, pre-Mazama till is correlated with the Crowfoot Advance (dated elsewhere to be Younger Dryas equivalent). A Neoglacial till is found between the Mazama tephra and a paleosol developed on the Bridge River tephra. A log dating 2400 BP from the upper part of this till indicates that this glacier advance, correlated with the Peyto Advance, culminated shortly before deposition of the Bridge River tephra. Radiocarbon and tree-ring dates from overridden trees exposed in moraine sections indicate that the initial Cavell (Little Ice Age (LIA)) Advance overrode this paleosol and trees after A.D. 1271. Three subsequent phases of the Cavell Advance were dated by dendrochronology. The maximum glacier extent occurred in the mid-18th century, predating 1743 on the southern lateral, although ice still occupied and tilted a tree on the north lateral in 1758. Subsequent glacier advances occurred ca. 1800–1816 and in the late 19th century. The relative extent of the LIA advances at Stutfield differs from that of other major eastward flowing outlets of the Columbia Icefield, which have maxima in the mid–late 19th century. This is the first study from the Canadian Rockies to demonstrate that the large, morphologically simple, lateral moraines defining the LIA glacier limits are actually composite features, built up progressively (but discontinuously) over the Holocene and contain evidence of multiple Holocene- and Crowfoot-age glacier advances.


The Holocene ◽  
2017 ◽  
Vol 27 (9) ◽  
pp. 1350-1358 ◽  
Author(s):  
Andrew P Moran ◽  
Susan Ivy Ochs ◽  
Marcus Christl ◽  
Hanns Kerschner

A two-phased moraine system in the high Alpine valley of Lisenser Längental in the Stubai Alps of western Austria is located in an intermediate morphostratigraphic position constrained by ‘Egesen Stadial’ (Younger Dryas) moraines down valley and ‘Little Ice Age’ (‘LIA’) positions (modern times) up valley. The equilibrium line altitude (ELA) was about 50 m lower than during the ‘LIA’ when applying an accumulation area ratio of 0.67. Exposure dating of boulders with 10Be yields a mean age of 3750 ± 330 years for the more extensive outer moraine system and a single age of 3140 ± 280 years for the inner one. The ages correspond well to the ‘Loebben oscillation’, a sequence of multi-decadal to multi-centennial cooling phases at the onset of the late-Holocene, also recognized in other Alpine records. The climatic downturn was severe enough to cause small to medium-sized Alpine glaciers in the central Alps to advance significantly beyond their ‘LIA’ extent, but too short to trigger a similar reaction with large glaciers.


Sign in / Sign up

Export Citation Format

Share Document