scholarly journals Vaccinia Virus Serpin-1 Deletion Mutant Exhibits a Host Range Defect Characterized by Low Levels of Intermediate and Late mRNAs

Virology ◽  
1999 ◽  
Vol 262 (2) ◽  
pp. 298-311 ◽  
Author(s):  
Joanna L. Shisler ◽  
Stuart N. Isaacs ◽  
Bernard Moss
2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Gilad Sivan ◽  
Shira G. Glushakow-Smith ◽  
George C. Katsafanas ◽  
Jeffrey L. Americo ◽  
Bernard Moss

ABSTRACTReplication of vaccinia virus in human cells depends on the viral C7 or K1 protein. A previous human genome-wide short interfering RNA (siRNA) screen with a C7/K1 double deletion mutant revealed SAMD9 as a principal host range restriction factor along with additional candidates, including WDR6 and FTSJ1. To compare their abilities to restrict replication, the cellular genes were individually inactivated by CRISPR/Cas9 mutagenesis. The C7/K1 deletion mutant exhibited enhanced replication in each knockout (KO) cell line but reached wild-type levels only in SAMD9 KO cells. SAMD9 was not depleted in either WDR6 or FTSJ1 KO cells, suggesting less efficient alternative rescue mechanisms. Using the SAMD9 KO cells as controls, we verified a specific block in host and viral intermediate and late protein synthesis in HeLa cells and demonstrated that the inhibition could be triggered by events preceding viral DNA replication. Inhibition of cap-dependent and -independent protein synthesis occurred primarily at the translational level, as supported by DNA and mRNA transfection experiments. Concurrent with collapse of polyribosomes, viral mRNA was predominantly in 80S and lighter ribonucleoprotein fractions. We confirmed the accumulation of cytoplasmic granules in HeLa cells infected with the C7/K1 deletion mutant and further showed that viral mRNA was sequestered with SAMD9. RNA granules were still detected in G3BP KO U2OS cells, which remained nonpermissive for the C7/K1 deletion mutant. Inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral mRNA, and failure of PKR, RNase L, or G3BP KO cells to restore protein synthesis support an unusual mechanism of host restriction.IMPORTANCEA dynamic relationship exists between viruses and their hosts in which each ostensibly attempts to exploit the other’s vulnerabilities. A window is opened into the established condition, which evolved over millennia, if loss-of-function mutations occur in either the virus or host. Thus, the inability of viral host range mutants to replicate in specific cells can be overcome by identifying and inactivating the opposing cellular gene. Here, we investigated a C7/K1 host range mutant of vaccinia virus in which the cellular gene SAMD9 serves as the principal host restriction factor. Host restriction was triggered early in infection and manifested as a block in translation of viral mRNAs. Features of the block include inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral RNA, and inability to overcome the inhibition by inactivation of protein kinase R, ribonuclease L, or G3 binding proteins, suggesting a novel mechanism of host restriction.


Virology ◽  
1981 ◽  
Vol 111 (2) ◽  
pp. 488-499 ◽  
Author(s):  
R. Drillien ◽  
F. Koehren ◽  
A. Kirn

PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28677 ◽  
Author(s):  
Susana Guerra ◽  
Fernando Abaitua ◽  
Luis Martínez-Sobrido ◽  
Mariano Esteban ◽  
Adolfo García-Sastre ◽  
...  

BioTechniques ◽  
2000 ◽  
Vol 28 (6) ◽  
pp. 1137-1148 ◽  
Author(s):  
C. Staib ◽  
I. Drexler ◽  
M. Ohlmann ◽  
S. Wintersperger ◽  
V. Erfle ◽  
...  

BioTechniques ◽  
2002 ◽  
Vol 33 (1) ◽  
pp. 186-188 ◽  
Author(s):  
David C. Tscharke ◽  
Geoffrey L. Smith

2006 ◽  
Vol 80 (15) ◽  
pp. 7714-7728 ◽  
Author(s):  
Jye-Chian Hsiao ◽  
Chien-Chiang Chao ◽  
Ming-Jer Young ◽  
Yu-Tai Chang ◽  
Er-Chieh Cho ◽  
...  

ABSTRACT Vaccinia virus does not grow in Chinese hamster ovary (CHO-K1) cells in the absence of a viral host range factor, cowpox protein CP77. In this study, CP77 was fused to the C terminus of green fluorescence protein (GFP-CP77) and a series of nested deletion mutants of GFP-CP77 was constructed for insertion into a vaccinia virus host range mutant, VV-hr, and expressed from a viral early promoter. Deletion mapping analyses demonstrated that the N-terminal 352 amino acids of CP77 were sufficient to support vaccinia virus growth in CHO-K1 cells, whereas the C-terminal residues 353 to 668 were dispensable. In yeast two-hybrid analyses, CP77 bound to a cellular protein, HMG20A, and GST pulldown analyses showed that residues 1 to 234 of CP77 were sufficient for this interaction. After VV-hr virus infection of CHO-K1 cells, HMG20A was translocated from the nucleus to viral factories and bound to the viral genome via the HMG box region. In control VV-hr-infected CHO-K1 cells, binding of HMG20A to the viral genome persisted from 2 to 8 h postinfection (h p.i.); in contrast, when CP77 was expressed, the association of HMG20A with viral genome was transient, with little HMG20A remaining bound at 8 h p.i. This indicates that dissociation of HMG20A from viral factories correlates well with CP77 host range activity in CHO-K1 cells. Finally, in cells expressing a CP77 deletion protein (amino acids 277 to 668) or a ΔANK5 mutant that did not support vaccinia virus growth and did not contain the HMG20A binding site, HMG20A remained bound to viral DNA, demonstrating that the binding of CP77 to HMG20A is essential for its host range function. In summary, our data revealed that a novel cellular protein, HMG20A, the dissociation of which from viral DNA is regulated by CP77, providing the first cellular target regulated by viral host range CP77 protein.


2020 ◽  
Vol 117 (7) ◽  
pp. 3759-3767 ◽  
Author(s):  
Chen Peng ◽  
Bernard Moss

Modified vaccinia virus Ankara (MVA), a widely used vaccine vector for expression of genes of unrelated pathogens, is safe, immunogenic, and can incorporate large amounts of added DNA. MVA was derived by extensively passaging the chorioallantois vaccinia virus Ankara (CVA) vaccine strain in chicken embryo fibroblasts during which numerous mutations and deletions occurred with loss of replicative ability in most mammalian cells. Restoration of the deleted C12L gene, encoding serine protease inhibitor 1, enhances replication of MVA in human MRC-5 cells but only slightly in other human cells. Here we show that repair of the inactivated C16L/B22R gene of MVA enhances replication in numerous human cell lines. This previously uncharacterized gene is present at both ends of the genome of many orthopoxviruses and is highly conserved in most, including smallpox and monkeypox viruses. The C16L/B22R gene is expressed early in infection from the second methionine of the previously annotated Copenhagen strain open reading frame (ORF) as a 17.4-kDa protein. The C16/B22 and C12 proteins together promote MVA replication in human cells to levels that are comparable to titers in chicken embryo fibroblasts. Both proteins enhance virion assembly, but C16/B22 increases proteolytic processing of core proteins in A549 cells consistent with higher infectious virus titers. Furthermore, human A549 cells expressing codon-optimized C16L/B22R and C12L genes support higher levels of MVA replication than cell lines expressing neither or either alone. Identification of the genes responsible for the host-range defect of MVA may allow more rational engineering of vaccines for efficacy, safety, and propagation.


2019 ◽  
Vol 9 ◽  
Author(s):  
Mauricio Teixeira Lima ◽  
Graziele Pereira Oliveira ◽  
José Augusto Bastos Afonso ◽  
Rodolfo José Cavancanti Souto ◽  
Carla Lopes de Mendonça ◽  
...  

Cytokine ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 298
Author(s):  
Katharine Fagan ◽  
Brianne Couturier ◽  
Nick van Buuren ◽  
Crystal Harmon ◽  
Joanna Shisler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document