The Inhibition of Calcium Carbonate Formation in Aqueous Supersaturated Solutions, Spontaneous Precipitation and Seeded Crystal Growth

Author(s):  
Pavlos G. Klepetsanis ◽  
Angeliki Kladi ◽  
Terje Ostvold ◽  
Christos G. Kontoyiannis ◽  
Petros G. Koutsoukos ◽  
...  
2020 ◽  
Vol 21 (15) ◽  
pp. 5526
Author(s):  
Anna Bastrzyk ◽  
Marta Fiedot-Toboła ◽  
Halina Maniak ◽  
Izabela Polowczyk ◽  
Grażyna Płaza

This study presents a new, simple way to obtain mesoporous calcite structures via a green method using an eco-friendly surface-active compound, surfactin, as a controlling agent. The effects of synthesis time and surfactin concentration were investigated. The obtained structures were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) coupled with gas mass spectrometry (QMS) analysis. The experimental data showed that surfactin molecules significantly changed the morphology of the calcite crystals, roughening and deforming the surface and creating a greater specific surface area, even at low biosurfactant concentrations (10 ppm). The size of the crystals was reduced, and the zeta potential value of calcium carbonate was more negative when more biosurfactant was added. The XRD data revealed that the biomolecules were incorporated into the crystals and slowed the transformation of vaterite into calcite. It has been shown that as long as vaterite is present in the medium, the calcite surface will be less deformed. The strong influence of surfactin molecules on the crystal growth of calcium carbonate was due to the interaction of surfactin molecules with free calcium ions in the solution as well as the biomolecules adsorption at the formed crystal surface. The role of micelles in crystal growth was examined, and the mechanism of mesoporous calcium carbonate formation was presented.


2020 ◽  
Author(s):  
Carolyn D. Bland ◽  
◽  
Timothy M. Gallagher ◽  
Daniel O. Breecker

1982 ◽  
Vol 86 (1) ◽  
pp. 103-107 ◽  
Author(s):  
T. F. Kazmierczak ◽  
M. B. Tomson ◽  
G. H. Nancollas

2013 ◽  
Vol 4 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Ong Ming Wei ◽  
Norsuzailina Mohamed Sutan

Efflorescence phenomenon on concrete is not new and found in the form of white deposits on surfaces of concrete. Incorporation of Finely Ground Mineral Admixture (FGMA) in concrete to prevent occurrence of efflorescence is based on reduction of portlandite, densified microstructure and thus enhanced watertightness. The magnitude of efflorescence in term of percentage of calcium carbonate formation of FGMA modified mortar were evaluated at water-cement ratio of 0.3, 0.4 and 0.5 with 10%, 20%, and 30% of cement replacement by weight. The samples were tested with chemical analysis at 7, 14, 21, 28, 60 and 90 days. The FGMA additions into mortar were comparing with ordinary mortar to evaluate enhanced performance of FGMA modified mortar toward efflorescence. The results of this experiment showed that addition of FGMA into mortar caused less formation of calcium carbonate as partial replacement of cement with certain w/c ratio and percentage of cement replacement.


2013 ◽  
Vol 453 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Jingtan Su ◽  
Xiao Liang ◽  
Qiang Zhou ◽  
Guiyou Zhang ◽  
Hongzhong Wang ◽  
...  

ACC (amorphous calcium carbonate) plays an important role in biomineralization process for its function as a precursor for calcium carbonate biominerals. However, it is unclear how biomacromolecules regulate the formation of ACC precursor in vivo. In the present study, we used biochemical experiments coupled with bioinformatics approaches to explore the mechanisms of ACC formation controlled by ACCBP (ACC-binding protein). Size-exclusion chromatography, chemical cross-linking experiments and negative staining electron microscopy reveal that ACCBP is a decamer composed of two adjacent pentamers. Sequence analyses and fluorescence quenching results indicate that ACCBP contains two Ca2+-binding sites. The results of in vitro crystallization experiments suggest that one Ca2+-binding site is critical for ACC formation and the other site affects the ACC induction efficiency. Homology modelling demonstrates that the Ca2+-binding sites of pentameric ACCBP are arranged in a 5-fold symmetry, which is the structural basis for ACC formation. To the best of our knowledge, this is the first report on the structural basis for protein-induced ACC formation and it will significantly improve our understanding of the amorphous precursor pathway.


2019 ◽  
Author(s):  
Hiroyuki Kintsu ◽  
Alberto Pérez-Huerta ◽  
Shigeru Ohtsuka ◽  
Taiga Okumura ◽  
Shinsuke Ifuku ◽  
...  

Abstract Background: The mollusk shells present distinctive microstructures that are formed by small amounts of organic matrices controlling the crystal growth of calcium carbonate. These microstructures show superior mechanical properties such as strength or flexibility. The shell of Pinctada fucata has the prismatic layer consisting of prisms of single calcite crystals. These crystals contain small-angle grain boundaries caused by a dense intracrystalline organic matrix network to improve mechanical strength. Previously, we identified chitin and chitinolytic enzymes as components of this intracrystalline organic matrix. In this study, we analyzed the function of those organic matrices in calcium carbonate crystallization by in vitro and in vivo experiments.Results: We analyzed calcites synthesized in chitin gel with or without chitinolytic enzymes by using transmission electron microscope (TEM) and atom probe tomography (APT). TEM observations showed that grain boundary was more induced as concentration of chitinolytic enzymes increased and thus, chitin became thinner. In an optimal concentration of chitinolytic enzymes, small-angle grain boundaries were observed. APT analysis showed that ion clusters derived from chitin were detected. In order to clarify the importance of chitinolytic enzymes on the formation of the prismatic layer in vivo , we performed the experiment in which chitinase inhibitor was injected into a living Pinctada fucata and then analyzed the change of mechanical properties of the prismatic layer. The hardness and elastic modulus increased after injection of chitinase inhibitor. Electron back scattered diffraction (EBSD) mapping data showed that the spread of crystal orientations in whole single crystal also increased by the effect of inhibitor injections.Conclusion: Our results suggested that chitinolytic enzymes may function cooperatively with chitin to regulate the crystal growth and mechanical properties of the prismatic layer, and chitinolytic enzymes are essential for the formation of the normal prismatic layer of P. fucata.


Sign in / Sign up

Export Citation Format

Share Document