Teleportation of General Quantum States, Squeezing and the Decoherence Problem in Quantum Computers

Author(s):  
Luigi Accardi
2009 ◽  
Vol 18 (11) ◽  
pp. 4711-4715 ◽  
Author(s):  
Ren Ting-Ting ◽  
Luo Jun ◽  
Sun Xian-Ping ◽  
Zhan Ming-Sheng

2012 ◽  
Vol 12 (1) ◽  
pp. 279-294 ◽  
Author(s):  
Ming-Xing Luo ◽  
Yun Deng ◽  
Xiu-Bo Chen ◽  
Yi-Xian Yang

2020 ◽  
Author(s):  
авторов Коллектив

Настоящий том посвящен актуальным проблемам квантовых технологий и микроэлектроники. Рассмотрены различные численные и аналитические подходы к моделированию и контролю элементной базы квантовых компьютеров и симуляторов с учетом декогерентизации и квантовых шумов. Представлены современные методы, направленные на инжиниринг различных квантовых состояний, а также их адекватный, полный и точный контроль. Представлены разработки, обеспечивающие существенное улучшение процедур томографии квантовых состояний и операций с учетом несовершенства технологий и измерений. Кроме того, рассмотрены некоторые вопросы, связанные с разработкой и моделированием приборов микроэлектроники и наноэлектроники. Для широкого круга специалистов в области квантовых информационных технологий, микро- и наноэлектроники, а также студентов и аспирантов, обучающихся по соответствующим специальностям. This volume is devoted to topical problems of quantum technologies and microelectronics. Various numerical and analytical approaches to modeling and control of the element base of quantum computers and simulators, taking into account decoherence and quantum noise, are considered. The modern methods aimed at engineering various quantum states, as well as their adequate, complete and accurate control are presented. Developments are presented that provide a significant improvement in the procedures for tomography of quantum states and operations, taking into account the imperfection of technologies and measurements. In addition, some issues related to the development and modeling of microelectronic and nanoelectronic devices are considered. Intended for a wide range of specialists in the field of quantum information technologies, as well as in the field of micro- and nanoelectronics; it can also be recommended to undergraduate and graduate students of relevant specialties.вЃ


2015 ◽  
Vol 13 (02) ◽  
pp. 1550012
Author(s):  
H. Eftekhari ◽  
E. Faizi

So far, one-way information deficit (OWID) has been calculated explicitly only for Bell-diagonal states and the four-parameter family of X-states with additional assumptions and expressions for more general quantum states are not known. In this paper, we derive explicit expressions for OWID for a larger class of two-qubit states, namely, a five-parameter family of two-qubit states. The dynamic behavior of the OWID under decoherence channel is investigated and it is shown that the OWID is more robust against the decoherence than the entanglement.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Chris Akers ◽  
Sergio Hernández-Cuenca ◽  
Pratik Rath

Abstract Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy Cone (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI.


2018 ◽  
Author(s):  
Rajendra K. Bera

In Part I we laid the foundation on which quantum algorithms are built. In part II we harnessed such exotic aspects of quantum mechanics as superposition, entanglement and collapse of quantum states to show how powerful quantum algorithms can be constructed for efficient computation. In Part III (the concluding part) we discuss two aspects of quantum computation: (1) the problem of correcting errors that inevitably plague physical quantum computers during computations, by algorithmic means; and (2) a possible underlying mechanism for the collapse of the wave function during measurement.


Sign in / Sign up

Export Citation Format

Share Document