The Influence of Post-Depositional Effects on Ice Core Studies: Examples From the Alps, Andes, and Altai

Author(s):  
Ulrich Schotterer ◽  
Willibald Stichler ◽  
Patrick Ginot
Keyword(s):  
Ice Core ◽  
1979 ◽  
Vol 16 (7) ◽  
pp. 1341-1361 ◽  
Author(s):  
Nicholas Eyles

Supraglacial debris transported by temperate valley glaciers is classified as supraglacial morainic till, distinct from lodgement till, and melt-out and flow till species on polar glaciers. In Iceland and the Alps, where annual discharges of supraglacial morainic till vary from 200–2000 m3 (compared with a maximum discharge of 26 000 m3 of lodgement till), till is deposited as three facies.Fades 1 occurs where supraglacial morainic till slows the rate of ice melt such that till is slowly superimposed on the subglacial surface in the form of stagnation or disintegration topography. The rate of deposition shows an initial slowing phase in response to (1) soil formation and (2) melt-out of englacial debris, followed by accelerated deposition accompanying the formation of thaw lakes. Continued mass movement of till on lake margins (backwasting) is more effective in destroying the ice-core than either top or bottom melt and prohibits accumulation of a distinct melt-out sediment. This situation can be contrasted with the style of sedimentation at polar glaciers. Where the depositing glacier is inactive and uncontrolled an unlineated till surface, typical of stagnation or disintegration topography, develops. Significantly, in terms of Pleistocene reconstructions, tracts of stagnation topography are being constructed at the margins of certain active Icelandic glaciers by sequential stagnation of a marginal rim of ice as the active glacier retreats up-valley.Fades 2 occurs where the till cover is too thin or too coarse and ice melt is unretarded and supraglacial morainic till is deposited as a dispersed bouldery veneer by dumping during which gravity sorting occurs. Dump moraine ridges frequently show internal bedding being ice-contact screes at time of formation but are not ice-cored. An active glacier produces a controlled distribution of landforms resulting in a lineated till surface.Facies 3 refers to those stratigraphic sequences where irregular or lensate till horizons alternate repeatedly with ice-contact outwash. The stratigraphic sequence as a whole is defined here as a supraglacial morainic till complex. Well-sorted, clast-supported outwash sediments occur within complexes deposited at inactive low-angled ice margins. At active steep-fronted glaciers, where areas of the till-covered ice front are only episodically scoured, distinct flood-deposited matrix-supported outwash units are found. Their subaerial formation runs counter to recent published interpretation of sediments in certain Pleistocene eskers.


2006 ◽  
Vol 6 (3) ◽  
pp. 667-688 ◽  
Author(s):  
H. Sodemann ◽  
A. S. Palmer ◽  
C. Schwierz ◽  
M. Schwikowski ◽  
H. Wernli

Abstract. Mineral dust from the Saharan desert can be transported across the Mediterranean towards the Alpine region several times a year. When coinciding with snowfall, the dust can be deposited on Alpine glaciers and then appears as yellow or red layers in ice cores. Two such significant dust events were identified in an ice core drilled at the high-accumulation site Piz Zupó in the Swiss Alps (46°22' N, 9°55' E, 3850 m a.s.l.). From stable oxygen isotopes and major ion concentrations, the events were approximately dated as October and March 2000. In order to link the dust record in the ice core to the meteorological situation that led to the dust events, a novel methodology based on back-trajectory analysis was developed. It allowed the detailed analysis of the specific meteorologic flow evolution that was associated with Saharan dust transport into the Alps, and the identification of dust sources, atmospheric transport paths, and wet deposition periods for both dust events. Differences in the chemical signature of the two dust events were interpreted with respect to contributions from the dust sources and aerosol scavenging during the transport. For the October event, the trajectory analysis indicated that dust deposition took place during 13–15 October 2000. Mobilisation areas of dust were mainly identified in the Algerian and Libyan deserts. A combination of an upper-level potential vorticity streamer and a midlevel jet across Algeria first brought moist Atlantic air and later mixed air from the tropics and Saharan desert across the Mediterranean towards the Alps. The March event consisted of two different deposition phases which took place during 17–19 and 23–25 March 2000. The first phase was associated with an exceptional transport pathway past Iceland and towards the Alps from northerly directions. The second phase was similar to the October event. A significant peak of methanesulphonic acid associated with the March dust event was most likely caused by incorporation of biogenic aerosol while passing through the marine boundary layer of the western Mediterranean during a local phytoplankton bloom. From this study, we conclude that for a detailed understanding of the chemical signal recorded in dust events at Piz Zupó, it is essential to consider the whole transport sequence of mineral aerosol, consisting of dust mobilisation, transport, and deposition at the glacier.


2007 ◽  
Vol 112 (D23) ◽  
Author(s):  
Hilde Fagerli ◽  
Michel Legrand ◽  
Susanne Preunkert ◽  
Vigdis Vestreng ◽  
David Simpson ◽  
...  

2018 ◽  
Vol 12 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Pascal Bohleber ◽  
Helene Hoffmann ◽  
Johanna Kerch ◽  
Leo Sold ◽  
Andrea Fischer

Abstract. Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.


2012 ◽  
Vol 12 (8) ◽  
pp. 21713-21778 ◽  
Author(s):  
Y. H. Lee ◽  
J.-F. Lamarque ◽  
M. G. Flanner ◽  
C. Jiao ◽  
D. T. Shindell ◽  
...  

Abstract. As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluated the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Jungfraujoch and Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to capture both the observed temporal trends and the magnitudes well at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice-core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores indicates a strong influence from Western Europe, but the modeled BC increases in that period are consistent with the emission changes in Eastern Europe, the Middle East, South and East Asia. At the Alps site, the simulated BCsuggests a strong influence from Europe, which agrees with the Alps ice core observations. Models successfully simulate higher BC concentrations observed at Zuoqiupu during the non-monsoon season than monsoon season, but models underpredict BC in both seasons. Despite a large divergence in BC deposition at two Antarctic ice core sites, models are able to capture the relative increase from preindustrial to present-day seen in the ice cores. In 2000 relative to 1850, globally annually averaged BC surface albedo forcing from the offline simulations ranges from 0.014 to 0.019 W m−2 among the ACCMIP models. Comparing offline and online BC albedo forcings computed by some of the same models, we find that the global annual mean can vary by up to a factor of two because of different aerosol models or different BC-snow parameterizations and snow cover. The spatial distributions of the offline BC albedo forcing in 2000 show especially high BC forcing (i.e. over 0.1 W m−2) over Manchuria, Karakoram, and most of the Former USSR. Models predict the highest global annual mean BC forcing in 1980 rather than 2000, mostly driven by the high fossil fuel and biofuel emissions in the Former USSR in 1980.


2011 ◽  
Vol 7 (2) ◽  
pp. 1049-1072 ◽  
Author(s):  
R. Boch ◽  
H. Cheng ◽  
C. Spötl ◽  
R. L. Edwards ◽  
X. Wang ◽  
...  

Abstract. Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 a and 2 σ-age uncertainties of ca. 200 to 500 a. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the current Greenland ice-core timescale the NALPS record suggests overall younger ages of rapid warming and cooling transitions between 120 to 60 ka. In particular, there is a discrepancy in the duration of stadial 22 between the ice-core and the stalagmite chronology (ca. 3000 vs. 3650 a). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial (GS) and warm interstadial (GI) successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed Last Glacial events have not been documented in Europe before.


2005 ◽  
Vol 5 (4) ◽  
pp. 7497-7545 ◽  
Author(s):  
H. Sodemann ◽  
A. S. Palmer ◽  
C. Schwierz ◽  
M. Schwikowski ◽  
H. Wernli

Abstract. Mineral dust from the Saharan desert can be transported across the Mediterranean towards the Alpine region several times a year. Occasionally, the dust is deposited with snowfall on Alpine glaciers and appears then as yellow or red layers in ice cores. Two such significant dust events were identified in an ice core drilled at the high-accumulation site Piz Zupó in the Swiss Alps (46°22' N, 9°55' E, 3850 m a.s.l.). From stable oxygen isotopes and major ion concentrations, the events were approximately dated as October and March 2000. In order to link the dust record in the ice core to the meteorological situation that led to the dust events, a novel methodology based on back-trajectory analysis was developed. It allowed for the identification of source regions, the atmospheric transport pathways, and wet deposition periods for both dust events. Furthermore, differences in the chemical signature of the two dust events could be interpreted with respect to contributions from the dust sources and aerosol scavenging during the transport. The dust deposition during the October event took place during 13–16 October 2000. Mobilisation areas of dust were mainly identified in the Algerian and Libyan deserts. A combination of an upper-level potential vorticity streamer and a midlevel jet across Algeria first brought moist Atlantic air and later mixed air from the tropics and Saharan desert across the Mediterranean towards the Alps. The March event consisted of two different deposition phases which took place during 18–20 and 23–26 March 2000. The first phase was associated with an exceptional transport pattern past Iceland and towards the Alps from northerly directions. The second phase was similar to the October event. A significant peak of methanesulphonic acid associated with the March dust event was most likely caused by incorporation of biogenic aerosol while passing through the marine boundary layer of the western Mediterranean during a local phytoplankton bloom. From this study, we conclude that the whole sequence of mobilisation, transport, and deposition of mineral aerosol should be considered for a detailed understanding of the chemical signal recorded in the ice core at Piz Zupó.


2011 ◽  
Vol 7 (4) ◽  
pp. 1247-1259 ◽  
Author(s):  
R. Boch ◽  
H. Cheng ◽  
C. Spötl ◽  
R. L. Edwards ◽  
X. Wang ◽  
...  

Abstract. Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2σ-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the ice-core and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland.


2018 ◽  
Vol 12 (10) ◽  
pp. 3311-3331 ◽  
Author(s):  
Michael Sigl ◽  
Nerilie J. Abram ◽  
Jacopo Gabrieli ◽  
Theo M. Jenk ◽  
Dimitri Osmont ◽  
...  

Abstract. Light absorbing aerosols in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes the radiative properties of these systems, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of aerosols through time. Starting around AD 1860, many glaciers in the European Alps began to retreat from their maximum mid-19th century terminus positions, thereby visualizing the end of the Little Ice Age in Europe. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps. The basis for this hypothesis was model simulations using elemental carbon concentrations at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved concentration records of refractory black carbon (rBC; using soot photometry) as well as distinctive tracers for mineral dust, biomass burning and industrial pollution from the Colle Gnifetti ice core in the Alps from AD 1741 to 2015. These records allow precise assessment of a potential relation between the timing of observed acceleration of glacier melt in the mid-19th century with an increase of rBC deposition on the glacier caused by the industrialization of Western Europe. Our study reveals that in AD 1875, the time when rBC ice-core concentrations started to significantly increase, the majority of Alpine glaciers had already experienced more than 80 % of their total 19th century length reduction, casting doubt on a leading role for soot in terminating of the Little Ice Age. Attribution of glacial retreat requires expansion of the spatial network and sampling density of high alpine ice cores to balance potential biasing effects arising from transport, deposition, and snow conservation in individual ice-core records.


2009 ◽  
Vol 114 (D14) ◽  
Author(s):  
Theo M. Jenk ◽  
Sönke Szidat ◽  
David Bolius ◽  
Michael Sigl ◽  
Heinz W. Gäggeler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document