Frequency of avirulence alleles in field populations of Leptosphaeria maculans in Europe

Author(s):  
Anna Stachowiak ◽  
Julia Olechnowicz ◽  
Malgorzata Jedryczka ◽  
Thierry Rouxel ◽  
Marie-Hélène Balesdent ◽  
...  
2020 ◽  
Vol 22 (1) ◽  
pp. 313
Author(s):  
Aldrin Y. Cantila ◽  
Nur Shuhadah Mohd Saad ◽  
Junrey C. Amas ◽  
David Edwards ◽  
Jacqueline Batley

Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.


2021 ◽  
Vol 22 (9) ◽  
pp. 4812
Author(s):  
Cunchun Yang ◽  
W. G. Dilantha Fernando

An oxidative burst is an early response of plants to various biotic/abiotic stresses. In plant-microbe interactions, the plant body can induce oxidative burst to activate various defense mechanisms to combat phytopathogens. A localized oxidative burst is also one of the typical behaviors during hypersensitive response (HR) caused by gene-for-gene interaction. In this study, the occurrence of oxidative burst and its signaling pathways was studied from different levels of disease severity (i.e., susceptible, intermediate, and resistant) in the B. napus–L. maculans pathosystem. Canola cotyledons with distinct levels of resistance exhibited differential regulation of the genes involved in reactive oxygen species (ROS) accumulation and responses. Histochemical assays were carried out to understand the patterns of H2O2 accumulation and cell death. Intermediate and resistant genotypes exhibited earlier accumulation of H2O2 and emergence of cell death around the inoculation origins. The observations also suggested that the cotyledons with stronger resistance were able to form a protective region of intensive oxidative bursts between the areas with and without hyphal intrusions to block further fungal advancement to the uninfected regions. The qPCR analysis suggested that different onset patterns of some marker genes in ROS accumulation/programmed cell death (PCD) such as RBOHD, MPK3 were associated with distinct levels of resistance from B. napus cultivars against L. maculans. The observations and datasets from this article indicated the distinct differences in ROS-related cellular behaviors and signaling between compatible and incompatible interactions.


2011 ◽  
Vol 6 (5) ◽  
pp. 1934578X1100600
Author(s):  
M. Soledade C. Pedras ◽  
Paulos B. Chumala

The phytotoxins and other metabolites produced by isolates L2/M2 of the fungal species Leptosphaeria maculans under different culture conditions, together with those of two new, but related isolates are disclosed. The common metabolic characteristics suggest a phylogenetic similarity between these isolates with potential to become widespread in mustard growing areas.


2017 ◽  
Vol 8 ◽  
Author(s):  
Lucie Trdá ◽  
Monika Barešová ◽  
Vladimír Šašek ◽  
Miroslava Nováková ◽  
Lenka Zahajská ◽  
...  

1995 ◽  
Vol 75 (2) ◽  
pp. 437-439 ◽  
Author(s):  
G. R. Stringam ◽  
V. K. Bansal ◽  
M. R. Thiagarajah ◽  
D. F. Degenhardt ◽  
J. P. Tewari

The doubled haploid breeding method and greenhouse screening using cotyledon bio-assay were successfully applied to transfer blackleg resistance from the Australian cultivar Maluka (Brassicas napus), into susceptible advanced B. napus lines from the University of Alberta. This approach for blackleg resistance breeding was effective and efficient as several superior blackleg resistant breeding lines were identified within 4 yr from the initial cross. One of these lines (91–21864NA) was entered in the 1993 trials of the Western Canada Canola/Rapeseed Recommending Committee. Key words: Blackleg resistance, Leptosphaeria maculans, doubled haploid, Brassica napus


Sign in / Sign up

Export Citation Format

Share Document