Raman Spectroscopy Assessment of Stiffness Reduction and Residual Strains due to Matrix Cracking in Angle — Ply Laminates

Author(s):  
P. Lundmark ◽  
D. G. Katerelos ◽  
J. Varna ◽  
C. Galiotis
2006 ◽  
Vol 42 (6) ◽  
pp. 535-546 ◽  
Author(s):  
D. G. Katerelos ◽  
P. Lundmark ◽  
J. Varna ◽  
C. Galiotis

2021 ◽  
Vol 15 (4) ◽  
pp. JAMDSM0040-JAMDSM0040
Author(s):  
M. J. Mohammad FIKRY ◽  
Shinji OGIHARA ◽  
Vladimir VINOGRADOV

Author(s):  
M. J. Mohammad Fikry ◽  
Shinji Ogihara ◽  
Vladimir Vinogradov

Abstract Matrix cracking in CFRP laminates results in degradation of mechanical properties of the material and appearance of residual strains. In this study, the residual strains investigated are experimentally and analytically for CFRP [0/756]s laminates. The strain gauges were used in this study to measure the strains. Due to very small residual strains at the unloading condition, the residual strains were also measured at different stress levels for laminates with different crack densities and are compared with theoretical predictions. Time-dependent viscoelastic behavior of the material is also considered to accurately measure the residual strains due to the occurrence of matrix cracks. This was done by using the strain recovery test when the loads were stopped for 1–1.5 hours during unloading and the strain changes during these times were recorded. The experimental results of the residual strains are in reasonably good agreement with the theoretical predictions. The fiber non-linearity properties of the laminates may cause some experimental data to shift above the analytical line.


2005 ◽  
Vol 127 (3) ◽  
pp. 337-350 ◽  
Author(s):  
Ba Nghiep Nguyen ◽  
Brian J. Tucker ◽  
Mohammad A. Khaleel

A micro–macro mechanistic approach to damage in short-fiber composites is developed in this paper. At the microscale, a reference aligned fiber composite is considered for the analysis of the damage mechanisms such as matrix cracking and fiber–matrix debonding using the modified Mori–Tanaka model. The associated damage variables are defined, and the stiffness reduction law dependent on these variables is established. The stiffness of a random fiber composite containing random matrix microcracks and imperfect interfaces is then obtained from that of the reference composite, which is averaged over all possible orientations and weighted by an orientation distribution function. The macroscopic response is determined using a continuum damage mechanics approach and finite element analysis. Final failure resulting from saturation of matrix microcracks, fiber pull-out and breakage is modeled by a vanishing element technique. The model is validated using the experimental results found in literature as well as the results obtained for a random chopped fiber glass–vinyl ester system. Acoustic emission techniques were used to quantify the amount and type of damage during quasi-static testing.


Materials ◽  
2005 ◽  
Author(s):  
James Pearson ◽  
Mohanraj Prabhugoud ◽  
Mohammed Zikry ◽  
Kara Peters

In this study, measurements from low-impact velocity experiments including embedded and surface mounted optical fiber Bragg grating (FBG) sensors were used to obtain detailed information pertaining to damage progression in two-dimensional laminate woven composites. The woven composites were subjected to multiple strikes at 2m/s until perforation occurred, and the impactor position and acceleration were monitored throughout each event. From these measurements, we obtained dissipated energies and contact forces. The FBG sensors were embedded and surface mounted at different critical locations near penetration-induced damaged regions. These FBG sensors were used to obtain initial residual strains and axial and transverse strains that correspond to matrix cracking and delamination. The transmission and reflection spectra were continuously monitored throughout the loading cycles. They were used, in combination with the peak contact forces, to delineate repeatable sensor responses corresponding to material failure. From the FBG spectra, fiber and matrix damage were separated by an analysis based on signal intensity, the presence of cladding modes, and the behavior of individual Bragg peaks as a function of evolving and repeated impact loads. This provided an independent feedback on the integrity of the Bragg gratings. A comparison by number of impact strikes and dissipated energies corresponding to material perforation indicates that embedding these sensors did not affect the integrity of the woven systems and that these measurements can provide accurate failure strains.


Author(s):  
James Pearson ◽  
Mohanraj Prabhugoud ◽  
Mohammed Zikry ◽  
Kara Peters

In this study, measurements form low-impact velocity experiments including embedded and surface mounted optical fiber Bragg grating (FBG) sensors were used to obtain detailed information pertaining to damage progression in two-dimensional laminate woven composites. The woven composites were subjected to multiple strikes at 2m/s until perforation occurred, and the impactor position and acceleration were monitored throughout each event. From these measurements, we obtained dissipated energies and contact forces. The FBG sensors were embedded and surface mounted at different critical locations near penetration-induced damaged regions. These FBG sensors were used to obtain initial residual strains and axial and transverse strains that correspond to matrix cracking and delamination. The transmission and reflection spectra were continuously monitored throughout the loading cycles. They were used, in combination with the peak contact forces, to delineate repeatable sensor responses corresponding to material failure. From the FBG spectra, fiber and matrix damage were separated by an analysis based on signal intensity and the behavior of individual Bragg peaks as a function of evolving and repeated impact loads. This provided independent feedback on the integrity of the Bragg gratings which can serve to eliminate errors in the strain data such as due to sensor debonding or fracture. The critical indicators present in the sensor spectra for the mapping of these sensor failure modes are derived.


Sign in / Sign up

Export Citation Format

Share Document