2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Faizan ◽  
K. C. Bhamu ◽  
Ghulam Murtaza ◽  
Xin He ◽  
Neeraj Kulhari ◽  
...  

AbstractThe highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Panya Khaenamkaew ◽  
Dhonluck Manop ◽  
Chaileok Tanghengjaroen ◽  
Worasit Palakawong Na Ayuthaya

The electrical properties of tin dioxide (SnO2) nanoparticles induced by low calcination temperature were systematically investigated for gas sensing applications. The precipitation method was used to prepare SnO2 powders, while the sol-gel method was adopted to prepare SnO2 thin films at different calcination temperatures. The characterization was done by X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The samples were perfectly matched with the rutile tetragonal structure. The average crystallite sizes of SnO2 powders were 45 ± 2, 50 ± 2, 62 ± 2, and 65 ± 2 nm at calcination temperatures of 300, 350, 400, and 450°C, respectively. SEM images and AFM topographies showed an increase in particle size and roughness with the rise in calcination temperature. The dielectric constant decreased with the increase in the frequency of the applied signals but increased on increasing calcination temperature. By using the UV-Vis spectrum, the direct energy bandgaps of SnO2 thin films were found as 4.85, 4.80, 4.75, and 4.10 eV for 300, 350, 400, and 450°C, respectively. Low calcination temperature as 300°C allows smaller crystallite sizes and lower dielectric constants but increases the surface roughness of SnO2, while lattice strain remains independent. Thus, low calcination temperatures of SnO2 are promising for electronic devices like gas sensors.


2010 ◽  
Vol 75 ◽  
pp. 36-42 ◽  
Author(s):  
Marina Rumyantseva ◽  
Irina Zhurbina ◽  
Elena Varechkina ◽  
Siranuysh Badalyan ◽  
Alexander Gaskov ◽  
...  

Powders of tin dioxide (SnO2) have been prepared by two different modifications of wet chemical synthesis, i.e. (i) by conventional hydrolysis of tin chloride dissolved in aqueous ammonia solution and (ii) by precipitation from tin chloride dissolved in aqueous hydrazine monohydrate (N2H4*H2O) solution. The prepared gels were dried and then annealed at different temperatures varied from 300 to 700 oC in order to form nanocrystals. Structure and optical properties of the samples were investigated by using X-ray diffraction, transmission electron microscopy, thermoprogrammable hydrogen reduction, low temperature nitrogen adsorption method, photoluminescence, infra-red absorption, Raman spectroscopy, and X-ray photoelectron spectroscopy. The samples prepared by hydrazine-based method are characterized by surface area about 127-188 m2/g with high sintering resistance. The optical spectroscopy data revealed pure crystallinity and high defect concentration for the samples prepared by hydrazine-based method. The experimental results are discussed in view of different states of chemisorbed oxygen on SnO2 nanocrystal surfaces, which determine electronic and optical properties of the prepared samples.


2019 ◽  
Vol 16 (2) ◽  
pp. 0361
Author(s):  
Mahmood Et al.

      Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO2 , CuO) amount. The effect of mixing concentration on the optical properties of the films was also investigated. The reflectance and transmittance spectra  in the wavelength range (300-1100) nm were employed to determine the optical properties such as energy band gap (Eg) and refractive index (n),  extinction coefficient  (k) , real and imaginary parts of dielectric constants (ε1, ε2) for (SnO2)1-x(TiO2:CuO)x films. The energy band gap omit of which showed reduction from (3.65 to 2.2) eV by reducing of SnO2 amount from (100 to 70) % .The reduction of energy band gap was ascribed to the new tail states introduced in the band gap of tin oxide. The sensitivity of the prepared sensor film was determined resistance difference of the films when exposed to oxidizing gas. The data declared that the mixed SnO2 films have better sensitivity in comparison with unmixed films.


2015 ◽  
Vol 29 (20) ◽  
pp. 1550103
Author(s):  
Jinhui Zhai ◽  
Jinguang Zhai ◽  
Ajun Wan

The electronic and optical properties of zinc-blende (zb)[Formula: see text]GeC have been investigated using first principles calculations based on the density functional theory (DFT). The obtained band gap of zb–GeC is 2.30[Formula: see text]eV by means of Heyd–Scuseria–Ernzerhof (HSE) functional. We have discussed the energy-dependent optical functions including dielectric constants, refractive index, absorption, reflectivity, and energy-loss spectrum in detail. The results reveal that zb–GeC has a higher static dielectric constant compared with that of zb–SiC. The optical functions are mainly associated with the interband transitions from the occupied valence bands (VBs) Ge[Formula: see text][Formula: see text] and C[Formula: see text][Formula: see text] states to Ge[Formula: see text][Formula: see text], [Formula: see text] and C[Formula: see text][Formula: see text] states of the unoccupied conduction bands (CBs).


Sign in / Sign up

Export Citation Format

Share Document