Identification of Regulatory Elements by Gene Family Footprinting and In Vivo Analysis

Author(s):  
David F. Fischer ◽  
Claude Backendorf

2007 ◽  
Vol 7 (2) ◽  
pp. 379-386 ◽  
Author(s):  
Sabrina Barchetta ◽  
Antonietta La Terza ◽  
Patrizia Ballarini ◽  
Sandra Pucciarelli ◽  
Cristina Miceli

ABSTRACT The induction of heat shock genes (HSPs) is thought to be primarily regulated by heat shock transcription factors (HSFs), which bind target sequences on HSP promoters, called heat shock elements (HSEs). In this study, we investigated the 5′ untranslated regions of the Tetrahymena thermophila HSP70-1 gene, and we found, in addition to the canonical and divergent HSEs, multiple sets of GATA elements that have not been reported previously in protozoa. By means of in vivo analysis of a green fluorescent protein reporter transgene driven by the HSP70-1 promoter, we demonstrate that HSEs do not represent the minimal regulatory elements for heat shock induction, since the HSP70-1 is tightly regulated by both HSE and GATA elements. Electrophoretic mobility shift assay also showed that HSFs are constitutively bound to the HSEs, whereas GATA elements are engaged only after heat shock. This is the first demonstration by in vivo analysis of functional HSE and GATA elements in protozoa. Furthermore, we provide evidence of a functional link between HSE and GATA elements in the activation of the heat shock response.



1999 ◽  
Vol 67 (5) ◽  
pp. 2482-2490 ◽  
Author(s):  
Julian R. Naglik ◽  
George Newport ◽  
Theodore C. White ◽  
Lynette L. Fernandes-Naglik ◽  
John S. Greenspan ◽  
...  

ABSTRACT Secreted aspartyl proteinases are putative virulence factors inCandida infections. Candida albicans possesses at least nine members of a SAP gene family, all of which have been sequenced. Although the expression of the SAPgenes has been extensively characterized under laboratory growth conditions, no studies have analyzed in detail the in vivo expression of these proteinases in human oral colonization and infection. We have developed a reliable and sensitive procedure to detect C. albicans mRNA from whole saliva of patients with oral C. albicans infection and those with asymptomaticCandida carriage. The reverse transcription-PCR protocol was used to determine which of the SAP1 to SAP7genes are expressed by C. albicans during colonization and infection of the oral cavity. SAP2 and the SAP4to SAP6 subfamily were the predominant proteinase genes expressed in the oral cavities of both Candida carriers and patients with oral candidiasis; SAP4, SAP5, orSAP6 mRNA was detected in all subjects. SAP1and SAP3 transcripts were observed only in patients with oral candidiasis. SAP7 mRNA expression, which has never been demonstrated under laboratory conditions, was detected in several of the patient samples. All seven SAP genes were simultaneously expressed in some patients with oral candidiasis. This is the first detailed study showing that the SAP gene family is expressed by C. albicans during colonization and infection in humans and that C. albicans infection is associated with the differential expression of individualSAP genes which may be involved in the pathogenesis of oral candidiasis.



Amino Acids ◽  
2011 ◽  
Vol 42 (2-3) ◽  
pp. 1065-1075 ◽  
Author(s):  
Stephanie Deasey ◽  
Olga Grichenko ◽  
Shaojun Du ◽  
Maria Nurminskaya


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.





2005 ◽  
Vol 173 (4S) ◽  
pp. 287-287
Author(s):  
Anhur L. Burnett ◽  
Hunter C. Champion ◽  
Robyn E. Becker ◽  
Melissa F. Kramer ◽  
Tongyun Liu ◽  
...  


Pneumologie ◽  
2017 ◽  
Vol 71 (S 01) ◽  
pp. S1-S125
Author(s):  
S Berger ◽  
C Gökeri ◽  
U Behrendt ◽  
SM Wienhold ◽  
J Lienau ◽  
...  


Diabetes ◽  
1993 ◽  
Vol 42 (7) ◽  
pp. 956-965 ◽  
Author(s):  
B. A. Zinker ◽  
D. B. Lacy ◽  
D. Bracy ◽  
J. Jacobs ◽  
D. H. Wasserman


Sign in / Sign up

Export Citation Format

Share Document