A Case Retrieval Model Based on Factor-Structure Connection and λ–Similarity in Fuzzy Case-Based Reasoning

Author(s):  
Dan Meng ◽  
Zaiqiang Zhang ◽  
Yang Xu
1997 ◽  
Vol 12 (01) ◽  
pp. 41-58 ◽  
Author(s):  
FRIEDRICH GEBHARDT

The main components of case-based reasoning are case retrieval and case reuse. While case retrieval mostly uses attribute comparisons, many other possibilities exist. The case similarity concepts described in the literature that are based on more elaborate structural properties are classified here into five groups: restricted geometric relationships; graphs; semantic nets; model-based similarities; hierarchically structured similarities. Some general topics conclude this survey on structure-based case retrieval methods and systems.


2021 ◽  
Vol 11 (10) ◽  
pp. 4494
Author(s):  
Qicai Wu ◽  
Haiwen Yuan ◽  
Haibin Yuan

The case-based reasoning (CBR) method can effectively predict the future health condition of the system based on past and present operating data records, so it can be applied to the prognostic and health management (PHM) framework, which is a type of data-driven problem-solving. The establishment of a CBR model for practical application of the Ground Special Vehicle (GSV) PHM framework is in great demand. Since many CBR algorithms are too complicated in weight optimization methods, and are difficult to establish effective knowledge and reasoning models for engineering practice, an application development using a CBR model that includes case representation, case retrieval, case reuse, and simulated annealing algorithm is introduced in this paper. The purpose is to solve the problem of normal/abnormal determination and the degree of health performance prediction. Based on the proposed CBR model, optimization methods for attribute weights are described. State classification accuracy rate and root mean square error are adopted to setup objective functions. According to the reasoning steps, attribute weights are trained and put into case retrieval; after that, different rules of case reuse are established for these two kinds of problems. To validate the model performance of the application, a cross-validation test is carried on a historical data set. Comparative analysis of even weight allocation CBR (EW-CBR) method, correlation coefficient weight allocation CBR (CW-CBR) method, and SA weight allocation CBR (SA-CBR) method is carried out. Cross-validation results show that the proposed method can reach better results compared with the EW-CBR model and CW-CBR model. The developed PHM framework is applied to practical usage for over three years, and the proposed CBR model is an effective approach toward the best PHM framework solutions in practical applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhiwang Zhong ◽  
Tianhua Xu ◽  
Feng Wang ◽  
Tao Tang

In Discrete Event System, such as railway onboard system, overwhelming volume of textual data is recorded in the form of repair verbatim collected during the fault diagnosis process. Efficient text mining of such maintenance data plays an important role in discovering the best-practice repair knowledge from millions of repair verbatims, which help to conduct accurate fault diagnosis and predication. This paper presents a text case-based reasoning framework by cloud computing, which uses the diagnosis ontology for annotating fault features recorded in the repair verbatim. The extracted fault features are further reduced by rough set theory. Finally, the case retrieval is employed to search the best-practice repair actions for fixing faulty parts. By cloud computing, rough set-based attribute reduction and case retrieval are able to scale up the Big Data records and improve the efficiency of fault diagnosis and predication. The effectiveness of the proposed method is validated through a fault diagnosis of train onboard equipment.


Author(s):  
Jose M. Juarez ◽  
Susan Craw ◽  
J. Ricardo Lopez-Delgado ◽  
Manuel Campos

Case-Based Reasoning (CBR) learns new knowledge from data and so can cope with changing environments. CBR is very different from model-based systems since it can learn incrementally as new data is available, storing new cases in its case-base. This means that it can benefit from readily available new data, but also case-base maintenance (CBM) is essential to manage the cases, deleting and compacting the case-base. In the 50th anniversary of CNN (considered the first CBM algorithm), new CBM methods are proposed to deal with the new requirements of Big Data scenarios. In this paper, we present an accessible historic perspective of CBM and we classify and analyse the most recent approaches to deal with these requirements.


Author(s):  
Jiaxing Lu ◽  
Jiang Qing ◽  
Huang He ◽  
Zhang Zhengyong ◽  
Wang Rujing

Case retrieval is one of the key steps of case-based reasoning. The quality of case retrieval determines the effectiveness of the system. The common similarity calculation methods based on attributes include distance and inner product. Different similarity calculations have different influences on the effect of case retrieval. How to combine different similarity calculation results to get a more widely used and better retrieval algorithm is a hot issue in the current case-based reasoning research. In this paper, the granularity of quotient space is introduced into the similarity calculation based on attribute, and a case retrieval algorithm based on granularity synthesis theory is proposed. This method first uses similarity calculation of different attributes to get different results of case retrieval, and considers that these classification results constitute different quotient spaces, and then organizes these quotient spaces according to granularity synthesis theory to get the classification results of case retrieval. The experimental results verify the validity and correctness of this method and the application potential of granularity calculation of quotient space in case-based reasoning.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5118 ◽  
Author(s):  
Zhai ◽  
Martínez Ortega ◽  
Beltran ◽  
Lucas Martínez

As an artificial intelligence technique, case-based reasoning has considerable potential to build intelligent systems for smart agriculture, providing farmers with advice about farming operation management. A proper case representation method plays a crucial role in case-based reasoning systems. Some methods like textual, attribute-value pair, and ontological representations have been well explored by researchers. However, these methods may lead to inefficient case retrieval when a large volume of data is stored in the case base. Thus, an associated representation method is proposed in this paper for fast case retrieval. Each case is interconnected with several similar and dissimilar ones. Once a new case is reported, its features are compared with historical data by similarity measurements for identifying a relative similar past case. The similarity of associated cases is measured preferentially, instead of comparing all the cases in the case base. Experiments on case retrieval were performed between the associated case representation and traditional methods, following two criteria: the number of visited cases and retrieval accuracy. The result demonstrates that our proposal enables fast case retrieval with promising accuracy by visiting fewer past cases. In conclusion, the associated case representation method outperforms traditional methods in the aspect of retrieval efficiency.


1994 ◽  
Vol 9 (4) ◽  
pp. 355-381 ◽  
Author(s):  
Farhi Marir ◽  
Ian Watson

Case-Based Reasoning (CBR) is a fresh reasoning paradigm for the design of expert systems in domains that may not be appropriate for other reasoning paradigms such as model-based reasoning. As a result of this, and because of its resemblance to human reasoning, CBR has attracted increasing interest both from those experienced in developing expert systems and from novices. Although CBR is a relatively new discipline, there are an increasing number of papers and books being published on the subject. In this context, this bibliographic categorization is an accompanying paper to a review of CBR by the same authors. The objective of this paper is to help researchers quickly identify relevant references.


Sign in / Sign up

Export Citation Format

Share Document