Automatic Detection of Meddies Through Texture Analysis of Sea Surface Temperature Maps

Author(s):  
Marco Castellani ◽  
Nuno C. Marques
2021 ◽  
Vol 13 (3) ◽  
pp. 501
Author(s):  
Andra Whiteside ◽  
Cécile Dupouy ◽  
Awnesh Singh ◽  
Robert Frouin ◽  
Christophe Menkes ◽  
...  

An underwater volcanic eruption off the Vava’u island group in Tonga on 7 August 2019 resulted in the creation of floating pumice on the ocean’s surface extending over an area of 150 km2. The pumice’s far-reaching effects from its origin in the Tonga region to Fiji and the methods of automatic detection using satellite imagery are described, making it possible to track the westward drift of the pumice raft over 43 days. Level 2 Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), Sentinel-3 Ocean and Land Color Instrument (OLCI), and Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) imagery of sea surface temperature, chlorophyll-a concentration, quasi-surface (i.e., Rayleigh-corrected) reflectance, and remote sensing reflectance were used to distinguish consolidated and fragmented rafts as well as discolored and mesotrophic waters. The rafts were detected by a 1 to 3.5 °C enhancement in the MODIS-derived “sea surface temperature” due to the emissivity difference of the raft material. Large plumes of discolored waters, characterized by higher satellite reflectance/backscattering of particles in the blue than surrounding waters (and corresponding to either submersed pumice or associated white minerals), were associated with the rafts. The discolored waters had relatively lower chlorophyll-a concentration, but this was artificial, resulting from the higher blue/red reflectance ratio caused by the reflective pumice particles. Mesotrophic waters were scarce in the region of the pumice rafts, presumably due to the absence of phytoplanktonic response to a silicium-rich pumice environment in these tropical oligotrophic environments. As beach accumulations around Pacific islands surrounded by coral shoals are a recurrent phenomenon that finds its origin far east in the ocean along the Tongan trench, monitoring the events from space, as demonstrated for the 7 August 2019 eruption, might help mitigate their potential economic impacts.


2018 ◽  
Vol 40 (7) ◽  
pp. 2648-2666
Author(s):  
Ayoub Tamim ◽  
Khalid Minaoui ◽  
Khalid Daoudi ◽  
Hussein Yahia ◽  
Abderrahman Atillah ◽  
...  

2017 ◽  
Vol 51 (4) ◽  
pp. e9-e14 ◽  
Author(s):  
Hiroto Kajita ◽  
Atsuko Yamazaki ◽  
Takaaki Watanabe ◽  
Chung-Che Wu ◽  
Chuan-Chou Shen ◽  
...  

2019 ◽  
Vol 3 ◽  
pp. 929
Author(s):  
Marianus Filipe Logo ◽  
N M. R. R. Cahya Perbani ◽  
Bayu Priyono

Provinsi Nusa Tenggara Timur (NTT) merupakan penghasil rumput laut kappaphycus alvarezii kedua terbesar di Indonesia berdasarkan data Badan Pusat Statistik (2016). Oleh karena itu diperlukan zonasi daerah potensial budidaya rumput laut kappaphycus alvarezii untuk pengembangan lebih lanjut. Penelitian ini bertujuan untuk menentukan daerah yang potensial untuk budidaya rumput laut kappaphycus alvarezii di Provinsi NTT berdasarkan parameter sea surface temperature (SST), salinitas, kedalaman, arus, dissolved oxygen (DO), nitrat, fosfat, klorofil-a, dan muara sungai. Penentuan kesesuaian lokasi budidaya dilakukan dengan memberikan bobot dan skor bagi setiap parameter untuk budidaya rumput laut kappaphycus alvarezii menggunakan sistem informasi geografis melalui overlay peta tematik setiap parameter. Dari penelitian ini diperoleh bahwa kadar nitrat, arus, kedalaman, dan lokasi muara sungai menjadi parameter penentu utama. Jarak maksimum dari bibir pantai adalah sekitar 10 km. Potensial budidaya rumput laut kappaphycus alvarezii ditemukan di Pulau Flores bagian barat, kepulauan di Kabupaten Flores Timur dan Alor, selatan Pulau Sumba, Pulau Rote, dan Teluk Kupang.


Author(s):  
Diaz Juan Navia ◽  
Diaz Juan Navia ◽  
Bolaños Nancy Villegas ◽  
Bolaños Nancy Villegas ◽  
Igor Malikov ◽  
...  

Sea Surface Temperature Anomalies (SSTA), in four coastal hydrographic stations of Colombian Pacific Ocean, were analyzed. The selected hydrographic stations were: Tumaco (1°48'N-78°45'W), Gorgona island (2°58'N-78°11'W), Solano Bay (6°13'N-77°24'W) and Malpelo island (4°0'N-81°36'W). SSTA time series for 1960-2015 were calculated from monthly Sea Surface Temperature obtained from International Comprehensive Ocean Atmosphere Data Set (ICOADS). SSTA time series, Oceanic Nino Index (ONI), Pacific Decadal Oscillation index (PDO), Arctic Oscillation index (AO) and sunspots number (associated to solar activity), were compared. It was found that the SSTA absolute minimum has occurred in Tumaco (-3.93°C) in March 2009, in Gorgona (-3.71°C) in October 2007, in Solano Bay (-4.23°C) in April 2014 and Malpelo (-4.21°C) in December 2005. The SSTA absolute maximum was observed in Tumaco (3.45°C) in January 2002, in Gorgona (5.01°C) in July 1978, in Solano Bay (5.27°C) in March 1998 and Malpelo (3.64°C) in July 2015. A high correlation between SST and ONI in large part of study period, followed by a good correlation with PDO, was identified. The AO and SSTA have showed an inverse relationship in some periods. Solar Cycle has showed to be a modulator of behavior of SSTA in the selected stations. It was determined that extreme values of SST are related to the analyzed large scale oscillations.


Tellus B ◽  
1987 ◽  
Vol 39 (1-2) ◽  
pp. 171-183 ◽  
Author(s):  
William P. Elliott ◽  
James K. Angell

Sign in / Sign up

Export Citation Format

Share Document