High-Bandwidth Remote Parallel I/O with the Distributed Memory Filesystem MEMFS

Author(s):  
Jan Seidel ◽  
Rudolf Berrendorf ◽  
Marcel Birkner ◽  
Marc-André Hermanns
Author(s):  
Stefan Westerlund ◽  
Christopher Harris

AbstractThe latest generation of radio astronomy interferometers will conduct all sky surveys with data products consisting of petabytes of spectral line data. Traditional approaches to identifying and parameterising the astrophysical sources within this data will not scale to datasets of this magnitude, since the performance of workstations will not keep up with the real-time generation of data. For this reason, it is necessary to employ high performance computing systems consisting of a large number of processors connected by a high-bandwidth network. In order to make use of such supercomputers substantial modifications must be made to serial source finding code. To ease the transition, this work presents the Scalable Source Finder Framework, a framework providing storage access, networking communication and data composition functionality, which can support a wide range of source finding algorithms provided they can be applied to subsets of the entire image. Additionally, the Parallel Gaussian Source Finder was implemented using SSoFF, utilising Gaussian filters, thresholding, and local statistics. PGSF was able to search on a 256GB simulated dataset in under 24 minutes, significantly less than the 8 to 12 hour observation that would generate such a dataset.


2021 ◽  
Author(s):  
Garrett C. Mathews ◽  
Matthew Blaisdell ◽  
Aaron I. Lemcherfi ◽  
Carson D. Slabaugh ◽  
Christopher S. Goldenstein

2014 ◽  
Vol 17 (3-4) ◽  
pp. 115-132
Author(s):  
Alexandre Battiston ◽  
El-Hadj Miliani ◽  
Jean-Philippe Martin ◽  
Babak Nahid-Mobarakeh ◽  
Serge Pierfederici ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


2004 ◽  
Author(s):  
Robert Fielder ◽  
Matthew Palmer ◽  
Wing Ng ◽  
Matthew Davis ◽  
Aditya Ringshia

Sign in / Sign up

Export Citation Format

Share Document