Investigations of a Suspected Jump in Swedish Repeated Absolute Gravity Time Series

Author(s):  
Per-Anders Olsson ◽  
Andreas Engfeldt ◽  
Jonas Ågren
Keyword(s):  
Author(s):  
F.N Teferle ◽  
R.M Bingley ◽  
S.D.P Williams ◽  
T.F Baker ◽  
A.H Dodson

Researchers investigating climate change have used historical tide-gauge measurements from all over the world to investigate the changes in sea-level that have occurred over the last century or so. However, such estimates are a combination of any true sea-level variations and any vertical movements of the land at the specific tide-gauge. For a tide- gauge record to be used to determine the climate related component of changes in sea-level, it is therefore necessary to correct for the vertical land movement component of the observed change in sea-level. In 1990, the Institute of Engineering Surveying and Space Geodesy and Proudman Oceanographic Laboratory started developing techniques based on the Global Positioning System (GPS) for measuring vertical land movements (VLM) at tide-gauges in the UK. This paper provides brief details of these early developments and shows how they led to the establishment of continuous GPS (CGPS) stations at a number of tide-gauges. The paper then goes on to discuss the use of absolute gravity (AG), as an independent technique for measuring VLM at tide-gauges. The most recent results, from CGPS time-series dating back to 1997 and AG time-series dating back to 1995/1996, are then used to demonstrate the complementarity of these two techniques and their potential for providing site-specific estimates of VLM at tide-gauges in the UK.


2021 ◽  
Author(s):  
Victoria Anne Smith ◽  
Graham Appleby ◽  
Marek Ziebart ◽  
Jose Rodriguez

AbstractAbsolute gravity measurements taken on a near-weekly basis at a single location is a rarity. Twelve years of data at the UK’s Space Geodesy Facility (SGF) provides evidence to show that the application of results from international comparisons of absolute gravimeters should be applied to data and are critical to the interpretation of theSGF gravity time series of data from 2007 to 2019. Though residual biases in the data are seen. The SGF time series comprises near weekly data, with exceptions for manufacturer services and participation in international instrument comparisons. Each data set comprises hourly data taken over 1 day, with between 100 and 200 drops per hour. Environmental modelling indicates that the annual groundwater variation at SGFof some 2 m influences the gravity data by 3.1 μGal, based upon some measured and estimated soil parameters. The soil parameters were also used in the calculation of the effect of an additional telescope dome, built above the gravity laboratory, and have been shown to be realistic. Sited in close proximity to the long-established satellite laser ranging (SLR) system and the global navigation satellite systems (GNSS) the absolute gravimetry (AG) measurements provide a complimentary geodetic technique, which is non space-based. The SLR-derived height time series provides an independent measurement of vertical motion at the site which may be used to assess the AG results, which are impacted by ground motion as well as mass changes above and below the instruments.


2021 ◽  
Author(s):  
Filippo Greco ◽  
Daniele Carbone ◽  
Alfio Alex Messina ◽  
Danilo Contrafatto

<p>Since September 2014, iGrav#016 superconducting gravimeter (SG; by GWR) has recorded continuously at the Serra La Nave Astrophysical Observatory (SLN; 1730 m elevation; ~6.5 km from the Etna’s summit craters; Italy).</p><p>Here we present results of a comparison between a six-year (2015-2020) time series from iGrav#16 and absolute gravity data collected through the Microg LaCoste FG5#238 absolute gravimeter (AG), in the framework of repeated measurements that were performed at the same installation site of the SG. Both AG and SG records have been corrected for the local tides, local atmospheric pressure and for the polar motion effect.</p><p>The comparison allows to estimate the long-term drift of the SG, defined as the total SG trend minus the observed trend in AG measurements, which is of the order of 9 microGal/year. Once the drift effect is removed,  there is a remarkably good fit between the two data sets. The differences between absolute gravity changes and corresponding relative data in the continuous time series from the SG are within 1-2 microGal (the total error on AG measurements at this station is typically +/- 3 microGal).</p><p>After being corrected for the effect of instrumental drift, the time series from the SG reveals gravity changes that are due to hydrological and volcanological effects.</p><p>Our study shows how the combination of repeated AG measurements and continuous gravity observations through SGs can be used to obtain a fuller and more accurate picture of the temporal characteristics of the studied processes.</p>


2020 ◽  
Author(s):  
Brian Bramanto ◽  
Vegard Ophaug ◽  
Christian Gerlach ◽  
Kristian Breili

<p>Absolute gravity time series are available at various stations in Norway. The data have mainly been used for investigation of secular variations due to glacial isostatic adjustment. Previous work indicates that some of the estimated gravity trends suffer from unmodeled geophysical effects, like hydrological mass variations. Here we try to correct for hydrological effects by employing a combination of global and regional hydrological models. We use gravity data at two locations in the Norwegian network (NMBU and TRYC) which have frequently been observed with the absolute gravimeter FG5-226. </p><p>For computing the gravity corrections, we test various Global Hydrological Models (GHMs) and combine them with a Regional Runoff Model (RRM) for Norway, run by the Norwegian Water Resources and Energy Directorate (NVE). We distinguish between an outer and an inner zone. In the outer zone, Newtonian attraction and loading effects are derived from the GHMs, while the RRM is used in the inner zone. Both types of models provide information on soil moisture and snow layers. The RRM provides groundwater variations in addition. Furthermore, we try to consider the ‘umbrella effect’ that accounts for local disturbances in subsurface water flow caused by the existence of the building in which the gravity site is located.  </p><p>Neglecting the GIA trend, both NMBU and TRYC gravity time series show different amplitude and pattern. NMBU shows a lower amplitude, and with no prominent periodic pattern in the data, while TRYC shows the opposite. Significant discrepancies occurring in the NMBU gravity dataset between 2014 and 2015 are likely due to an instrumental effect, such as maintenance. The total modelled hydrological signal ranges from -4 and 4 µGal. Application of the correction reduces the standard deviation in the gravity time series, at its best, by about 33% or 0.8 µGal for NMBU, and by about 43% or two µGal for TRYC. Secular gravity rates have been derived from both, the uncorrected and the corrected time series. We find that application of the hydrological correction improves the fit of the computed secular gravity rates as compared to rates derived from the state-of-the-art Fennoscandian land uplift model NKG2016LU_abs. The uncorrected trends are 75% and 50% of the expected trend (0.77 and 1.12 µGal/year), while the hydrological corrections improve the fit to 82% and 93% for NMBU and TRYC, respectively.</p>


1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


Sign in / Sign up

Export Citation Format

Share Document